11 research outputs found
A block-based background model for moving object detection
Detecting the moving objects in a video sequence using a stationary camera is an important task for many computer vision applications. This paper proposes a background subtraction approach. As first step, the background is initialized using the block-based analysis before being updated in each incoming frame. Our background frame is generated by collecting the blocks background candidates. The block candidate selection is based on probability density function (pdf) computation. After that, the absolute difference between the background frame and each frame of sequence is computed. A noise filter is applied using the Structure/Texture decomposition in order to minimize the noise caused by background subtraction operation. The binary motion mask is formed using an adaptive threshold that was deduced from the weighted mean and variance calculation. To assure the correspondence between the current frame and the background frame, an adaptation of background model in each incoming frame is realized. After comparing results obtained from the proposed method to other existing ones, it was shown that our approach attains a higher degree of efficac
Digital Agriculture and Intelligent Farming Business Using Information and Communication Technology: A Survey
Adopting new information and communication technology (ICT) as a solution to achieve food security becomes more urgent than before, particularly with the demographical explosion. In this survey, we analyze the literature in the last decade to examine the existing fog/edge computing architectures adapted for the smart farming domain and identify the most relevant challenges resulting from the integration of IoT and fog/edge computing platforms. On the other hand, we describe the status of Blockchain usage in intelligent farming as well as the most challenges this promising topic is facing. The relevant recommendations and researches needed in Blockchain topic to enhance intelligent farming sustainability are also highlighted. It is found through the examination that the adoption of ICT in the various farming processes helps to increase productivity with low efforts and costs. Several challenges are faced when implementing such solutions, they are mainly related to the technological development, energy consumption, and the complexity of the environments where the solutions are implemented. Despite these constraints, it is certain that shortly several farming businesses will heavily invest to introduce more intelligence into their management methods. Furthermore, the use of sophisticated deep learning and Blockchain algorithms may contribute to the resolution of many recent farming issues
Prior Tonsillectomy and the Risk of Breast Cancer in Females: A Systematic Review and Meta-analysis
BackgroundExposure to recurrent infections in childhood was linked to an increased risk of cancer in adulthood. There is also evidence that a history of tonsillectomy, a procedure often performed in children with recurrent infections, is linked to an increased risk of leukemia and Hodgkin lymphoma. Tonsillectomy could be directly associated with cancer risk, or it could be a proxy for another risk factor such as recurrent infections and chronic inflammation. Nevertheless, the role of recurrent childhood infections and tonsillectomy on the one hand, and the risk of breast cancer (BC) in adulthood remain understudied. Our study aims to verify whether a history of tonsillectomy increases the risk of BC in women.MethodsA systematic review was performed using PubMed, Google Scholar, Scopus, Embase, and Web of Science databases from inception to January 25, 2022, to identify the studies which assessed the association between the history of tonsillectomy and BC in females. Odds ratio (OR) was calculated using the random/fixed-effects models to synthesize the associations between tonsillectomy and BC risk based on heterogeneity.ResultsEight studies included 2252 patients with breast cancer of which 1151 underwent tonsillectomy and 5314 controls of which 1725 had their tonsils removed. Patients with a history of tonsillectomy showed a higher subsequent risk of developing BC (OR, 1.24; 95% CI: 1.11-1.39) as compared to patients without a history of tonsillectomy. Influence analyses showed that no single study had a significant effect on the overall estimate or the heterogeneity.ConclusionsOur study revealed that a history of tonsillectomy is associated with an increased risk of breast cancer. These findings underscore the need for frequent follow-ups and screening of tonsillectomy patients to assess for the risk of BC
The temporal differences algorithm : parametric representations and simultaneous control-prediction task
Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1994.Includes bibliographical references (leaves 103-104).by Amine Omar Tazi-Riffi.M.S
A block-based background model for moving object detection
Detecting the moving objects in a video sequence using a stationary camera is an important task for many computer vision applications. This paper proposes a background subtraction approach. As first step, the background is initialized using the block-based analysis before being updated in each incoming frame. Our background frame is generated by collecting the blocks background candidates. The block candidate selection is based on probability density function (pdf) computation. After that, the absolute difference between the background frame and each frame of sequence is computed. A noise filter is applied using the Structure/Texture decomposition in order to minimize the noise caused by background subtraction operation. The binary motion mask is formed using an adaptive threshold that was deduced from the weighted mean and variance calculation. To assure the correspondence between the current frame and the background frame, an adaptation of background model in each incoming frame is realized. After comparing results obtained from the proposed method to other existing ones, it was shown that our approach attains a higher degree of efficac
A block-based background model for moving object detection
Detecting the moving objects in a video sequence using a stationary camera is an important task for many computer vision applications. This paper proposes a background subtraction approach. As first step, the background is initialized using the block-based analysis before being updated in each incoming frame. Our background frame is generated by collecting the blocks background candidates. The block candidate selection is based on probability density function (pdf) computation. After that, the absolute difference between the background frame and each frame of sequence is computed. A noise filter is applied using the Structure/Texture decomposition in order to minimize the noise caused by background subtraction operation. The binary motion mask is formed using an adaptive threshold that was deduced from the weighted mean and variance calculation. To assure the correspondence between the current frame and the background frame, an adaptation of background model in each incoming frame is realized. After comparing results obtained from the proposed method to other existing ones, it was shown that our approach attains a higher degree of efficac
Small Bowel Adenocarcinoma Complicating Coeliac Disease: A Report of Three Cases and the Literature Review
Coeliac disease is associated with an increased risk of malignancy, not only of intestinal lymphoma but also of small intestinal adenocarcinoma which is 82 times more common in patients with celiac disease than in the normal population. We report three additional cases of a small bowel adenocarcinoma in the setting of coeliac disease in order to underline the epidemiological features, clinicopathological findings, and therapeutic approaches of this entity based on a review of the literature. The three patients underwent a surgical treatment followed by adjuvant chemotherapy based on capecitabine/oxaliplatin regimen, and they have well recovered
Pancreatic surgery outcomes: multicentre prospective snapshot study in 67 countries
Background: Pancreatic surgery remains associated with high morbidity rates. Although postoperative mortality appears to have improved with specialization, the outcomes reported in the literature reflect the activity of highly specialized centres. The aim of this study was to evaluate the outcomes following pancreatic surgery worldwide.Methods: This was an international, prospective, multicentre, cross-sectional snapshot study of consecutive patients undergoing pancreatic operations worldwide in a 3-month interval in 2021. The primary outcome was postoperative mortality within 90 days of surgery. Multivariable logistic regression was used to explore relationships with Human Development Index (HDI) and other parameters.Results: A total of 4223 patients from 67 countries were analysed. A complication of any severity was detected in 68.7 percent of patients (2901 of 4223). Major complication rates (Clavien-Dindo grade at least IIIa) were 24, 18, and 27 percent, and mortality rates were 10, 5, and 5 per cent in low-to-middle-, high-, and very high-HDI countries respectively. The 90-day postoperative mortality rate was 5.4 per cent (229 of 4223) overall, but was significantly higher in the low-to-middle-HDI group (adjusted OR 2.88, 95 per cent c.i. 1.80 to 4.48). The overall failure-to-rescue rate was 21 percent; however, it was 41 per cent in low-to-middle-compared with 19 per cent in very high-HDI countries.Conclusion: Excess mortality in low-to-middle-HDI countries could be attributable to failure to rescue of patients from severe complications. The authors call for a collaborative response from international and regional associations of pancreatic surgeons to address management related to death from postoperative complications to tackle the global disparities in the outcomes of pancreatic surgery (NCT04652271; ISRCTN95140761)
Evaluation of a quality improvement intervention to reduce anastomotic leak following right colectomy (EAGLE): pragmatic, batched stepped-wedge, cluster-randomized trial in 64 countries
Background
Anastomotic leak affects 8 per cent of patients after right colectomy with a 10-fold increased risk of postoperative death. The EAGLE study aimed to develop and test whether an international, standardized quality improvement intervention could reduce anastomotic leaks.
Methods
The internationally intended protocol, iteratively co-developed by a multistage Delphi process, comprised an online educational module introducing risk stratification, an intraoperative checklist, and harmonized surgical techniques. Clusters (hospital teams) were randomized to one of three arms with varied sequences of intervention/data collection by a derived stepped-wedge batch design (at least 18 hospital teams per batch). Patients were blinded to the study allocation. Low- and middle-income country enrolment was encouraged. The primary outcome (assessed by intention to treat) was anastomotic leak rate, and subgroup analyses by module completion (at least 80 per cent of surgeons, high engagement; less than 50 per cent, low engagement) were preplanned.
Results
A total 355 hospital teams registered, with 332 from 64 countries (39.2 per cent low and middle income) included in the final analysis. The online modules were completed by half of the surgeons (2143 of 4411). The primary analysis included 3039 of the 3268 patients recruited (206 patients had no anastomosis and 23 were lost to follow-up), with anastomotic leaks arising before and after the intervention in 10.1 and 9.6 per cent respectively (adjusted OR 0.87, 95 per cent c.i. 0.59 to 1.30; P = 0.498). The proportion of surgeons completing the educational modules was an influence: the leak rate decreased from 12.2 per cent (61 of 500) before intervention to 5.1 per cent (24 of 473) after intervention in high-engagement centres (adjusted OR 0.36, 0.20 to 0.64; P < 0.001), but this was not observed in low-engagement hospitals (8.3 per cent (59 of 714) and 13.8 per cent (61 of 443) respectively; adjusted OR 2.09, 1.31 to 3.31).
Conclusion
Completion of globally available digital training by engaged teams can alter anastomotic leak rates. Registration number: NCT04270721 (http://www.clinicaltrials.gov)