171 research outputs found

    Complicated extubation in a patient with an obstructing tracheobronchial thrombus

    Get PDF
    Endotracheal intubation is an effective and rapid technique used as a standard practice for airway management. Airway injury or complications could be a significant cause of morbidity and mortality for patients. Tracheobronchial obstruction secondary to thrombus formation are life threatening complications of traumatic intubations. We present a case of complicated extubation resulting in cardiac arrest in a patient with an obstructing tracheobronchial thrombus. The patient, an 83-year-old female, with atrial fibrillation presented for neck pain. During CT imaging, she developed ventricular fibrillation cardiac arrest. Return of spontaneous circulation (ROSC) was achieved after three cycles of compressions and defibrillation and the patient was intubated. After stabilization of the patient and passing of spontaneous breathing trials, the patient was extubated. The patient rapidly developed hypoxic respiratory failure and progressed to pulseless electrical activity. ROSC was achieved again after 3 rounds of compressions. The following days, after passing her SBT yet again, extubation was attempted. She had an audible stridor and visible respiratory distress. Bedside Yankauer suction of the oropharynx resulted in retrieval of a large 6x2cm thrombus. Immediate resolution of stridor and improved oxygenation occurred. Tracheobronchial clots are a cause of cardiac arrest and potentially fatal cause of endotracheal intubation. Physicians and respiratory therapists must be aware of optimizing pre-extubation conditions in the setting of TB obstruction as it can lead to arrest and death

    Swarm Intelligence Applications in Electric Machines

    Get PDF

    Preliminary hydraulic fracturing campaign strategies for unconventional and tight reservoirs of UAE: Case studies and lessons learned

    Get PDF
    The challenges associated with applying hydraulic fracturing (HF) technology to tight carbonate reservoirs with very low clay content are substantial and demand a unique cost optimization strategy, especially in the context of low oil prices. This study discusses the challenges of applying HF technology to such reservoirs in the UAE. The work presents a comprehensive approach to assess and employ this technology, including a thorough study, a strategic roadmap, screening procedures, a fracturing workflow and strategy and an examination of the distinctive challenges and lessons learned from the process. The primary goal is to formulate a strategy that is applicable to tight and unconventional formations in the UAE, with a strong emphasis on cost optimization. Also, the evaluation methods of the fracturing technologies for these reservoirs were discussed, such as creating valid geomechanical properties to construct a Mechanical Earth Model (MEM) for successful execution and evaluating the reservoir quality. The results showed that conventional acidizing is not effective in stimulating the tight carbonate reservoirs, whereas acid-fracturing has successfully broken down the formation. It was also found that strategic planning, equipment availability, geomechanical studies and building an effective MEM are necessary for obtaining the optimum fracturing design and achieving successful development

    Experimental implementation of power-split control strategies in a versatile hardware-in-the-loop laboratory test bench for hybrid electric vehicles equipped with electrical variable transmission

    Get PDF
    The energy management strategy (EMS) or power management strategy (PMS) unit is the core of power sharing control in the hybridization of automotive drivetrains in hybrid electric vehicles (HEVs). Once a new topology and its corresponding EMS are virtually designed, they require undertaking different stages of experimental verifications toward guaranteeing their real-world applicability. The present paper focuses on a new and less-extensively studied topology of such vehicles, HEVs equipped with an electrical variable transmission (EVT) and assessed the controllability validation through hardware-in-the-loop (HiL) implementations versus model-in-the-loop (MiL) simulations. To this end, first, the corresponding modeling of the vehicle components in the presence of optimized control strategies were performed to obtain the MiL simulation results. Subsequently, an innovative versatile HiL test bench including real prototyped components of the topology was introduced and the corresponding experimental implementations were performed. The results obtained from the MiL and HiL examinations were analyzed and statistically compared for a full input driving cycle. The verification results indicate robust and accurate actuation of the components using the applied EMSs under real-time test conditions

    Multi-objective energy management and charging strategy for electric bus fleets in cities using various ECO strategies

    Get PDF
    The paper presents use case simulations of fleets of electric buses in two cities in Europe, one with a warm Mediterranean climate and the other with a Northern European (cool temperate) climate, to compare the different climatic effects of the thermal management strategy and charging management strategy. Two bus routes are selected in each city, and the effects of their speed, elevation, and passenger profiles on the energy and thermal management strategy of vehicles are evaluated. A multi-objective optimization technique, the improved Simple Optimization technique, and a “brute-force” Monte Carlo technique were employed to determine the optimal number of chargers and charging power to minimize the total cost of operation of the fleet and the impact on the grid, while ensuring that all the buses in the fleet are able to realize their trips throughout the day and keeping the battery SoC within the constraints designated by the manufacturer. A mix of four different types of buses with different battery capacities and electric motor specifications constitute the bus fleet, and the effects that they have on charging priority are evaluated. Finally, different energy management strategies, including economy (ECO) features, such as ECO-comfort, ECO-driving, and ECO-charging, and their effects on the overall optimization are investigated. The single bus results indicate that 12 m buses have a significant battery capacity, allowing for multiple trips within their designated routes, while 18 m buses only have the battery capacity to allow for one or two trips. The fleet results for Barcelona city indicate an energy requirement of 4.42 GWh per year for a fleet of 36 buses, while for Gothenburg, the energy requirement is 5 GWh per year for a fleet of 20 buses. The higher energy requirement in Gothenburg can be attributed to the higher average velocities of the bus routes in Gothenburg, compared to those of the bus routes in Barcelona city. However, applying ECO-features can reduce the energy consumption by 15% in Barcelona city and by 40% in Gothenburg. The significant reduction in Gothenburg is due to the more effective application of the ECO-driving and ECO-charging strategies. The application of ECO-charging also reduces the average grid load by more than 10%, while shifting the charging towards non-peak hours. Finally, the optimization process results in a reduction of the total fleet energy consumption of up to 30% in Barcelona city, while in Gothenburg, the total cost of ownership of the fleet is reduced by 9%

    Application of Ant Colony Optimization for Co-Design of Hybrid Electric Vehicles

    Get PDF
    One key subject matter for effective use of Hybrid Electric Vehicles (HEVs) is searching for drivetrains which their component dimensions and control parameters are co-optimally designed for a desired performance. This makes the design challenge as a problem, which needs to be addressed in a holistic way meeting various constraints. Along this line, the strong coupling between components sizes of a drivetrain and parameters of its controllers turns the optimal sizing and control design of HEVs into a Bi-level optimization problem. In this chapter, an important application of continuous Ant Colony Optimization (ACOR) for integrated sizing and control design of HEVs is thoroughly discussed for minimizing the drivetrain cost, minimizing the fuel consumption and addressing the control objectives at the meantime. The outcome of this chapter provides useful information related to incorporation of soft-computing, modeling and simulation concepts into optimization-based design of HEVs from all respects for designers and automotive engineers. It brings opportunities to the readers for understanding the criteria, constraints, and objective functions required for the optimal design of HEVs. Via introducing a two-folded iterative framework, fuel consumption and component sizing minimizations are of the main goals to be simultaneously addressed in this chapter using ACOR
    corecore