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Abstract: The paper presents use case simulations of fleets of electric buses in two cities in Europe,
one with a warm Mediterranean climate and the other with a Northern European (cool temperate)
climate, to compare the different climatic effects of the thermal management strategy and charging
management strategy. Two bus routes are selected in each city, and the effects of their speed, elevation,
and passenger profiles on the energy and thermal management strategy of vehicles are evaluated. A
multi-objective optimization technique, the improved Simple Optimization technique, and a “brute-
force” Monte Carlo technique were employed to determine the optimal number of chargers and
charging power to minimize the total cost of operation of the fleet and the impact on the grid, while
ensuring that all the buses in the fleet are able to realize their trips throughout the day and keeping
the battery SoC within the constraints designated by the manufacturer. A mix of four different
types of buses with different battery capacities and electric motor specifications constitute the bus
fleet, and the effects that they have on charging priority are evaluated. Finally, different energy
management strategies, including economy (ECO) features, such as ECO-comfort, ECO-driving, and
ECO-charging, and their effects on the overall optimization are investigated. The single bus results
indicate that 12 m buses have a significant battery capacity, allowing for multiple trips within their
designated routes, while 18 m buses only have the battery capacity to allow for one or two trips. The
fleet results for Barcelona city indicate an energy requirement of 4.42 GWh per year for a fleet of
36 buses, while for Gothenburg, the energy requirement is 5 GWh per year for a fleet of 20 buses.
The higher energy requirement in Gothenburg can be attributed to the higher average velocities
of the bus routes in Gothenburg, compared to those of the bus routes in Barcelona city. However,
applying ECO-features can reduce the energy consumption by 15% in Barcelona city and by 40%
in Gothenburg. The significant reduction in Gothenburg is due to the more effective application of
the ECO-driving and ECO-charging strategies. The application of ECO-charging also reduces the
average grid load by more than 10%, while shifting the charging towards non-peak hours. Finally,
the optimization process results in a reduction of the total fleet energy consumption of up to 30% in
Barcelona city, while in Gothenburg, the total cost of ownership of the fleet is reduced by 9%.

Keywords: simulation framework; ECO-charging; ECO-driving; ECO-comfort; TMS; EMS; CMS;
E-bus fleet; total cost of ownership; iSOPT; Monte Carlo

1. Introduction

Our planet is experiencing rapid climate change due to global warming, including
extreme weather, changes to the seasonal weather patterns, record-breaking temperatures,
and rising sea levels. Thus, global warming is a serious threat to the welfare of our planet.
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Global warming is brought about by the emission of greenhouse gases (GHG), such as
carbon dioxide (CO2). The total CO2 level in our atmosphere, which has remained relatively
stable for over a millennium, has risen exponentially during recent times, increasing
by more than 30% since the 1800s and exceeding the global threshold of 400 ppm in
2015 [1], while CO2 emissions have increased by 135% since the 1970s, reaching a peak of
33.3 gigatons of CO2 in 2019 [2]. As shown in Figure 1, the power and the transportation
sector constituted almost three-fifths of the worlds CO2 emissions in 2016 [3]. Thus,
reducing their dependence on fossil fuels will make a significant contribution to countries
becoming carbon neutral.

Figure 1. Breakdown of CO2 emissions, in gigatons of CO2, by industry sector [3].

To counteract the effects of climate change caused by the excessive release of green-
house gases into the atmosphere, the European Union (EU) has taken the initiative to
reduce its dependence on fossil fuels and become carbon neutral by 2050, as part of the
European Green Deal [4]. One such initiative is the Horizon 2020, the EU research and
innovation program, in collaboration with universities and industries, that aims to tackle
climate change, boost the EU’s global competitiveness, and achieve sustainable growth
and development [5]. Thus, the purpose of the EU project, ASSURED, which is part of the
EU’s Horizon 2020 framework, is to boost the electrification of urban heavy duty (HD) and
medium duty (MD) vehicles, such as buses and trucks, through integration with superfast
charging infrastructure [6]. ASSURED also aims to develop and test high-powered interop-
erable solutions using innovative charging strategies (CS) for fully sized HD applications.
To fulfil this goal, the research aims to investigate the total cost of ownership (TCO) of
HD and MD electric vehicle fleets in cities, understand the impact of fast charging profiles
on battery lifetime and sizing, and analyze the impact on the grid for a given mission
profile. Furthermore, various ECO strategies, including ECO-comfort, ECO-driving, and
ECO-charging are investigated to reduce the TCO and grid impact. Finally, the ability of
the electric bus (E-bus) fleet, consisting of buses with different configurations, to respect
the scheduling constraints set by the city bus operators (CBOs) and the constraints of the
state of charge (SoC) of the energy storage systems (ESS) set by the original equipment
manufacturers (OEMs), while following their daily mission scenario in a given route is
evaluated through extensive use case (UC) simulations. This paper will focus on E-bus
fleets and the high-power opportunity charging infrastructure necessary to allow the buses
to fulfil their routine driving scenarios.
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1.1. Electric Buses

According to the European Commission on Mobility and Transport, an efficient and
well-planned public transport system is important in reducing the numerous traffic afflic-
tions facing metropolitan centers, including congestion and harmful vehicular emissions [7].
Having plenty of accessible electrified public transport increases the mobility coefficient of
a city’s residents, thus improving business and logistics and providing health benefits. This
leads to increases in the productivity and long-term financial gain of the city. One of the key
aspects of electrification is the replacement of buses with internal combustion engines (ICE)
with that of hybrid electric or fully E-buses. These bring numerous challenges, including
investing in opportunity charging infrastructure along bus routes, electrified bus depots for
overnight charging, and replacing the entire ICE-based bus fleet with buses with electric
or hybrid powertrains [8]. All these challenges must be overcome to make electrified
public transportation successful and financially viable. The benefits include zero-emission
vehicles inside urban areas.

One of the disadvantages of electric vehicles (EVs), when compared to ICE-based
vehicles, is the lack of driving range that an EV can manage, even with a fully charged
ESS. To illustrate this point, let’s take an example of a 12 m diesel bus, with a 227-L fuel
tank, used for public transport in urban areas, and with the worst (midsummer, pre-1995
model) fuel efficiency of 80 L/100 km [9]. Even with such a dreadful fuel efficiency, the
diesel-powered bus can easily cover its entire daily route of up to 250 km on a single
tank of fuel; furthermore, it takes less than 10 min to refuel its tank at a filling station.
In comparison, a 12 m battery electric bus (BEV) has an average energy consumption of
1.45 kWh/km [10,11]. Thus, allowing for a Depth of Discharge (DoD) of 70%, the bus
would require an ESS with a capacity of 500 kWh to cover the daily transit requirement
of 250 km [12]. Such a battery, depending on its chemistry, would occupy 1000 L of space,
weigh 2.7 tons, and cost around €100,000 [13], which is basically a third of the capital
investment for a 12 m bus. Finally, using a 600-kW ultrafast charger, it would take at least
half an hour to fully recharge the ESS. Thus, to make it more feasible to deploy for CBOs,
the ESS capacity will most likely be downsized to allow only one or two return trips along
its route, while relying on opportunity charging at the route ends to fully charge the ESS
for subsequent trips. ASSURED considers 9 m, 12 m, and 18 m articulated E-buses from
different vendors, including VDL, VOLVO, IVECO, IRIZAR, and SOLARIS. However, in
this paper, only 12 m and 18 m buses are considered.

1.2. Charging Infrastructure

To meet the requirements of the EU 2050 carbon neutral objective, by 2030, a 15-fold
increase in public EV charging points will be required at 3 million charging points that
will serve a projected 44 million EVs. Over the next decade, €20 billion in investments
will be made to deploy the necessary charging infrastructure [14]. These investments will
bring about an integrated ultrafast public charging network all over Europe. Electrification
of the mass transit system is necessary to reduce the harmful vehicular emissions inside
urban areas. Electrification of the public transport system will also reduce the overall
CO2 emissions inside the city limits, since polluting electric power plants are typically
located in the outskirts of a city, whereas electricity can (and should) also be obtained from
clean and renewable sources, such as wind, solar, and hydroelectricity. Thus, deploying an
electrified public transportation system in cities, thereby maximizing the use of electricity
from renewable sources, will allow urban residents to enjoy an improved air quality. In
addition to the actual DC fast charging hardware (H/W), the charging infrastructure
also depends on high voltage (HV) and medium voltage (MV) grid lines, transformer
sub-stations, and ESS backup to support the ultrafast opportunity charging stations and
charging depots.

For E-buses, the primary means of connection to the charging station is via the
pantograph mechanism. It can either be the down pantograph, where the pantograph
connection drops down from the charging station to fit into the slot in the bus, or the up
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pantograph, where the pantograph connection rises from the bus to fit into the slot in the
charging station. Alternatively, buses also have a plug-in charging connection based on
combined charging system v2 (CCS2) connectors. The power rating of the opportunity
chargers can range from the fast 290 kW to the ultrafast 600 kW charger, will be DC, and will
mainly use the pantograph system, while overnight charging in the depot can either be AC
or DC, with a power rating ranging from 50 kW to 150 kW, and utilize either pantograph
or plug-in charging systems.

1.3. Goals and Objectives of the Paper

The purpose of this paper is to demonstrate the use of simulations for optimizing the
operation of E-bus fleets. A simulation platform, including an energy consumption and
cost evaluation of the entire fleet, is utilized to obtain a detailed overview of the operation.
Different energy management strategies are evaluated in the simulation platform, and
multi-objective optimization algorithms are utilized to find the most suitable strategy in
terms of both costs and environmental impact.

The paper is outlined as follows. In Section 2, the simulation framework is presented,
including both the technical description and the cost evaluations. The details of the studied
UCs, i.e., the routes, vehicles, and operational scenarios are outlined in Section 3. The
different ECO features regarding energy and charging management that can be applied
within the simulation are presented in Section 4, and the optimization techniques are
provided in Section 5. Finally, the results and the conclusions are given in Sections 6 and 7,
respectively.

2. Description of the Simulation Framework

In ASSURED, a low-fidelity (Lo-Fi) simulation framework has been developed that
will allow the user to evaluate the energy expenditure for fleets of vehicles, the daily impact
on the grid, and the TCO for a given mission profile. The Lo-Fi models are based on basic
electrical, mechanical, kinematic, and thermal equations to represent the transformer, the
charger, and the forward-facing E-bus powertrain model, as shown in Figure 2. The Lo-Fi
model uses Look-up Tables (LuTs) to model the efficiency maps of the transformer, the
charger, the DC-DC converter, and the inverter and electric machine combination. The
output of the LuT can be a function of one or more inputs, as shown in Table 1. The
ESS models are complex and require several LuTs to describe the open circuit voltage
(OCV), the relative capacity degradation (RCD), the series (Rs) and polarization resistance
(Rp), and the time constant (Tc) of the modeled capacitors. The efficiency map of the
transformer is generated from a high-fidelity (Hi-Fi) simulation of a generic transformer in
MATLAB/Simulink. The efficiency map of the charger is constructed from data supplied
by the charger OEM, while its power factor (PF) map (which outputs the PF experienced
by the grid during charging) is created from a Hi-Fi simulation of a generic charger in
MATLAB/Simulink. The efficiency map of the DC-DC converter is derived from a Hi-Fi
simulation of a SiC-based interleaved bidirectional converter [15] in MATLAB/Simulink.
The efficiency map of the inverter and electric machine has been created from experimental
tests. The maps for the ESS have been generated from experimental tests. These maps
ensure a measure of realism by ensuring dynamic changes due to changing conditions,
without sacrificing speed. The simulation framework uses the Lo-Fi model based on LuTs,
instead of a Hi-Fi model, to ensure that large fleets of E-buses can be simulated within a
reasonable timeframe.
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Figure 2. Forward-facing model of the electric vehicle powertrain.

Table 1. List of the LuTs used in the simulation framework.

Component Type of LuT Dependency

Transformer Efficiency map Load (VA)
PF (-)

Off board charger
Efficiency map Load (kW)

Output voltage (V)

PF map Load (kW)

Main DC-DC converter Efficiency map Output voltage (V)
Output current (A)

Auxiliary DC-DC converter Efficiency map Load (kW)

Electric machine and inverter
Efficiency map Angular speed (rad/s)

Output torque (Nm)

Torque-speed map Angular speed (rad/s)

Energy storage system

OCV map SoC (%)
Temperature (◦C)

RCD map
Charging rate (C)

Equivalent charge/discharge cycles (-)
Temperature (◦C)

Series resistance map
Charging rate (C)

SoC (%)
Temperature (◦C)

Polarization resistance map
Charging rate (C)

SoC (%)
Temperature (◦C)

Time constant
Charging rate (C)

SoC (%)
Temperature (◦C)

The inputs of the simulation framework include the driving (speed) profile, the
charging profile, the passenger load profile, the weather profile (temperature, humidity,
solar irradiance, wind, rainfall, and cloud coverage), and the road elevation profile. The
driving scenario uses the hybrid SORT profile, which is adapted to the average driving
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speed of the route. The charging profile (charging rate) depends on the battery chemistry
and charger power rating and uses the constant-current and constant voltage (CC/CV)
mode of charging. The passenger load profile is entirely randomized throughout the
simulation but has an upper limit based on the bus size and resetting to zero every time the
bus reaches the end of a route. The elevation profile is specific to the route and provided by
the CBO. Finally, the weather profile is dependent on the city being simulated and is based
on historical average monthly climate data for that city [16]; these have been acquired from
publicly available meteorological data. The cities of Barcelona, Gothenburg, Jaworzno,
and Osnabruck are participating in the ASSURED project; however, Table 2 only lists the
weather data for the two cities considered in this paper.

Table 2. Climate data of the cities [16].

City
Month

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

Barcelona

Hi (◦C) 15 15 17 20 23 27 29 29 26 23 18 15
Lo (◦C) 9 8 10 13 16 20 23 23 20 17 12 9

Hum (%) 69 66 73 69 68 67 67 72 74 74 72 70
Day (h) 9.5 10.5 12 13.5 14.5 15 15 14 12.5 11 10 9.5
Sun (%) 87 86 84 80 87 90 97 94 87 81 83 90

Gothenburg

Hi (◦C) 2 3 6 11 17 20 22 21 17 12 7 4
Lo (◦C) −2 −2 0 3 8 12 14 13 10 6 2 0

Hum (%) 85 82 77 71 66 69 73 74 79 81 86 86
Day (h) 7.5 9.5 11.5 14.5 16.5 18 17.5 15.5 13 10.5 8 7
Sun (%) 68 71 74 73 74 73 71 68 67 65 60 62

The simulation framework can also be configured via a user interface to tune it for
different UCs. The interface of the E-Bus allows the bus to be tuned to different bus sizes,
battery sizes and chemistries, cities and routes, and driving and charging scenarios. The
mission specific details of the UCs will be described in the next section. The climate data
from Table 2 are utilized in the simulation framework for all the cities participating in the
ASSURED project, with the daily variation between the high and low temperatures and
variation in the solar irradiance introduced. The road elevation, bus frequency, average
driving speed, operational time of the bus, and the charging type and duration can also
be defined for a route. All this information is utilized by the simulation framework to
evaluate the energy requirement of the bus and the impact on the local grid. The aim
of the simulation framework is not to conduct detailed simulations of every parameter
and situation, but to keep track of the overall energy flow within the system as the E-Bus
follows a typical mission scenario. The simulation framework has been made scalable to
handle fleets of E-buses and multiple bus routes in a city. The transformer design allows it
to interact with multiple chargers of varying power ratings simultaneously. Similarly, each
charger can interact with a fleet of E-buses according to their charging schedules, and each
E-bus can interact with chargers in different locations. The E-buses make use of bus IDs to
differentiate themselves from each other to a charger.

2.1. Electric Bus Powertrain

The following equations govern the behavior of the power relations in the backward
dynamics of the EV powertrain model shown in Figure 2. We start with the overall tractive
force (FT) that needs to be provided to cause the required acceleration of the vehicle
represented in Figure 3.

FT = m × g × (FR·cosα+sinα) +
1
2
ρ × CD × A × (v + VW)2 + (m + MF) × dv/dt (1)
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where m is the vehicle mass (kg), g is the gravitational acceleration (9.81 m/s2), FR is
the rolling resistance coefficient, α is the road gradient angle (rad), ρ is the air density
(1.226 kg/m3), CD is the drag coefficient, A is the vehicle frontal cross sectional area, v is
the vehicle speed (m/s), VW is the frontal windspeed (m/s), MF is the mass of rotational
inertia (kg), and dv/dt is the vehicle acceleration (m/s2). The total force required to propel
the vehicle forward has five components, namely, the rolling resistance (cos), the grade
resistance (sin), the aerodynamic drag, the inertial resistance, and finally, the accelerating
force. The set of Lo-Fi equations for individual components of the electric bus powertrain
are given in the Appendix A.

Figure 3. The forces acting on a vehicle in motion.

2.2. Charging Model

The DC charger is composed of two stages, a step-down transformer and rectifier
stage, followed by a DC-DC converter stage. Since the backward dynamics are being
described, the DC-DC converter stage will be presented first, followed by the transformer
and rectifier stage. The equations are given in the Appendix A. The equations for the
charging infrastructure consider multiple chargers that will be consuming electricity from
the substation transformer.

2.3. Total Cost of Ownership

A TCO analysis of a bus fleet must always be made on a system level to include all
the relevant costs. As a first step, the productivity of the bus fleet must be confirmed, i.e.,
that the buses are able to fulfil the required duty cycles without failure. In the second step,
the total cost of the operation can be evaluated. The total cost of ownership of an electric
bus fleet consists of the capital expenses as well as the operational expenses. The capital
costs arise from owning a bus fleet, i.e., purchasing the vehicles and the required charging
infrastructure, while the operational costs arise from the energy, service, and maintenance,
as well as salary costs.

In the evaluation of the capital costs, the service life of each component is an important
parameter. In this paper, the electric buses and charging infrastructures are assumed to last
for up to 15 years under standard operating conditions. An exception to this is the lifetime
of ESS, which is assumed to have a lifetime of 8 years and will thus need to be replaced at
least once during the lifetime of the bus. The battery is also one of the most expensive parts
of an electric vehicle, and its lifetime is highly dependent on the usage of the bus. Hence,
accurate battery modelling, sizing, as well as a detailed model of the operation and energy
consumption, are crucial to obtain a realistic view of the battery investment costs. However,
uncertainty related to future battery prices and battery characteristics remain. Battery
prices are generally forecasted to decrease in the coming years. Under this assumption, the
battery can be replaced by a new one with a similar capacity but at a lower price, or it can
be replaced by a battery with the same price as the initial one but with a higher energy
and/or power capacity. In the first case, the operation of the electric bus will continue as it
did previously, but the capital costs related to the battery replacement will be lower than
what could be expected based on today’s price levels. In the other case, the operation of
the bus can potentially be improved, as the amount and/or duration of charging can be



Sustainability 2021, 13, 7865 8 of 42

reduced. However, the battery prices in the heavy-duty vehicle segment may not decrease
in the same manner as in the light vehicle segment, where mass production quantities are
higher, thus lowering the price levels as light EVs become more common.

When it comes to the charging infrastructure, the utilization of the charger is important.
A thorough analysis of the operation of the bus fleet provides information on how many
chargers are required for serving the fleet. As the lifetime of a charger is long, future
upscaling of the electric bus fleet can have an impact on the costs related to the charger
investments. For instance, locating a charger where multiple buses and bus lines can
utilize the same infrastructure can reduce the overall TCO in the long run, even though
the infrastructure is oversized during the very first years of operation. In the simulation
platform, the costs are evaluated individually for each vehicle, and the total costs are
obtained as a sum of these costs. The TCO can be expressed as the sum of the capital costs
and the operational costs:

TCO = TCOCAP + TCOOP (2)

where TCOCAP and TCOOP denote the total capital costs and the operational costs, respec-
tively. The capital costs can be expressed as:

TCOCAP = TCOVEH + TCOBAT + TCOCHAR (3)

where ‘VEH’ represents the vehicle, ‘BAT’ represents the ESS, and ‘CHAR’ represents the
charger. The vehicle capital expense (per km), TCOVEH, is calculated as:

TCOVEH = CVEH/(LVEH × DYEAR) (4)

where CVEH is the purchase price of the vehicle, LVEH the estimated vehicle lifetime,
and DYEAR is the estimated yearly mileage. The DYEAR for all routes is assumed to be
45,000 km/year; under this assumption of the yearly mileage travelled, the LVEH is as-
sumed to be 15 years. The battery expense, TCOBAT is calculated as:

TCOBAT = CBAT/(LBAT × DYEAR) (5)

where CBAT is the purchase price of the battery, LBAT is the estimated battery lifetime, and
DYEAR is the estimated yearly mileage of the vehicle. LBAT depends on the usage of the
battery, as explained above; however, under the assumption that DYEAR is 45,000 km/year,
LBAT is assumed to be 8 years for all batteries, except for LTO batteries, which are assumed
to have a lifetime of 15 years. The charger expense is calculated as:

TCOCHAR = (∑CCHAR)/(LCHAR × DYEAR × NVEH) (6)

where CCHAR is the purchase price, the installation cost, and the grid connection cost of
all the chargers, LCHAR is the estimated charger lifetime, DYEAR is the estimated yearly
mileage of the vehicle, and NVEH is the number of vehicles sharing the same charger.
It is assumed that all chargers have similar lifetimes of 15 years; in reality, they would
vary depending on the manufacturer, power rating, and operational conditions, such as
frequency or intensity of use and the average and peak power load on the charger. The
operational cost is calculated as:

COP =
CEL

(∫ t=tEND
t=0 Pdt + (SOC(tEND)− SOC(0))× EESS

)
+ CEX × (PMEAN − PCUT)∫ t=tEND

t=0 vdt
(7)

where CEL is the electricity tariff, P is the charging power, SoC is the state of charge of
the battery, and CEX is the excess power usage surcharge applied when PMEAN > PCUT,
where PMEAN is the maximum hourly running average power consumption, and PCUT is
the threshold, beyond which the power usage is in excess. CEL is taken to be 0.1 €/kWh
in Barcelona and 0.05 €/kWh in Gothenburg [17]. CEX is assumed to be 0.1 €/kW, and



Sustainability 2021, 13, 7865 9 of 42

PCUT is assumed to be 10 kW. For simplicity, the service and maintenance costs are omitted
from the analysis. The salary costs are also omitted, which means that the operational costs
consist of only the energy-related costs. The installation costs of the chargers [18], used in
the UCs simulations for single and fleets of e-buses, have been taken from a detailed survey
conducted of the charging infrastructure in multiple metropolitan cities. The capital costs
of the ESS [19] are taken from literature, while the vehicle and charger costs are supplied
by the OEMs.

The total costs of the chargers are separately considered based on their rated power,
installation costs, and grid connection costs. The costs related to the charger, presented
in Tables 3 and 4, is based on interpolation and extrapolation of the data provided in [18]
using the spline method and then subject to a 2% inflation over a 5 year period. The grid
connection charge is assumed to be 100 €/kW/year.

Table 3. Capital costs of equipment [18,19].

CBAT CVEH CCHAR

NMC: 420 €/kWh
LFP: 580 €/kWh

LTO: 1005 €/kWh

12 m bus: €300 k
18 m bus: €450 k

100 kW: €48,273
150 kW: €68,472
290 kW: €113,615
450 kW: €144,613
600 kW: €153,721

Table 4. Installation costs of fast chargers [18].

Charger/Site 100 kW
Charger

150 kW
Charger

290 kW
Charger

450 kW
Charger

600 kW
Charger

1 €42,064 €43,622 €53,510 €74,783 €104,387
2 €33,269 €34,375 €42,349 €60,267 €85,594

3–5 €24,925 €25,848 €31,706 €44,309 €61,847
6 and above €22,035 €16,960 €20,804 €29,074 €40,582

3. Details of the City Routes and Vehicle Types

This section provides a brief overview of the cities and the routes, as well as the electric
buses that will be simulated in the simulation framework. The paper is an extension of the
research carried out in [15,20]; however, this paper considers two cities with completely
different climates to each other, four different E-bus models as part of a fleet, and multiple
routes with different characteristics. The effect of all this variability on the vehicle energy
requirements is investigated. The seasonal effects (i.e., summer and winter) and the effects
of ECO features on the energy requirements are also investigated and are presented in
subsequent sections.

3.1. City of Barcelona

Barcelona, Spain has a Mediterranean climate, with hot and humid summers and mild
winters. Most of the rainfall occurs during the winter months. Table 2 presents the annual
climate details for the city, while Figure 4 gives a daily snapshot of the weather for four
seasons, which will be assumed during simulations of the city. UCs from two routes in
Barcelona will be presented, the L33 and the H16 route, as shown in the map in Figure 5.
Table 5 lists the configuration and mission constraints of the route and the chargers that
must be factored in during the simulations. The results for a single bus, fleets consisting
of four types of buses, and multi-objective optimization of the fleets will be presented
for Barcelona.
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Figure 4. Seasonal climate of the city of Barcelona.

Figure 5. The map of Barcelona city, showing routes H16 and L33 [21].
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Route L33 runs between Zona Universitaria and Verneda; it has a route length of
9.7 km; and a return trip takes approximately 100 min. Route H16 runs between Zona
Franca and Campus Besos; it has a route length of 11.9 km; and a return trip takes approxi-
mately 2.5 h. Both routes feature the 600-kW ultrafast charger from Heliox. Figure 6 shows
the elevation and velocity profile of the two routes for one return trip, which are inputted
into the simulation platform. Figure 7 shows the daily passenger profile considered for
the two routes for both the 12 m and 18 m bus types. The profile shown in Figure 7 is
only shown for the first bus in the fleet; subsequent buses in the fleet will have these
shifted in time, according to their schedule. Furthermore, since the passenger load profile
is completely randomized, the actual passenger trend in the different schedules will differ
slightly from the plot shown and from each other. However, the daily passenger profile for
a given bus is assumed to remain the same for all days of the entire year. This similarity in
the passenger profile will allow for a comparison to be made between seasons.

Figure 6. The route elevation and velocity profiles for one return trip for (a) Route H16 and (b) Route L33.
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Figure 7. The daily passenger profiles shown for 12 m and 18 m buses on (a) Route H16 and (b) Route L33.

Table 5. Scenario details of the routes in Barcelona city.

Parameters Route 1 Route 2

Route L33 H16

Max. acceleration on flat ground (m/s2) 1.5 1.5
Operational time per day (h, kms) 15.33 h, 155 km 17.33 h, 165 km
Bus frequency (peak hours) Every 7 min Every 8 min
Number of stops per bus line 27 35
Average speed of the bus during peak hour (km/h) 11.64 9.52
Return trip distance (km) 19.4 23.8
Number of return trips per day 8 7
Total number of buses in route (-) 16 20
Type of buses in route T 4 × each type 5 × each type
Ambient temperature (◦C) Min: 8 ◦C, Max: 29 ◦C

Charger
Charging Scenario Opportunity, AC/DC, CCS 2
Max. Number of Intermediate Charging Instances per Cycle 1
Max. Charging Power for On-road Superfast Charging (kW) 600
Available Superfast Charging at Terminals or Stops (mins) 3–8
Power Charging for Overnight Stations (kW) 100
Overnight Charging Time Available (h) 2–5
Grid Capacity (kVA) 300–600
Cost of Connection of Charger to Grid (€/charger) 200,000
Lifetime of Charger (years) 15
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3.2. City of Gothenburg

Gothenburg, Sweden has an ocean climate, according to the Köppen climate classifi-
cation [22], with mild summers and cold winters. The city experiences plenty of rainfall
throughout the year. Being a coastal city, the diurnal temperature variations are moderate.
Table 2 presents the annual climate details for the city, while Figure 8 gives a daily snapshot
of the weather for four seasons, which will be assumed during the simulations for the city.

For the single bus simulations, the UCs from route R55 in Gothenburg will be pre-
sented, while for the fleet and multi-objective optimization, routes R55 and EL16 will be
considered. Figure 9 shows the two routes, while Table 6 lists the configuration and mission
constraints of the route and the chargers that must be factored in during the simulations.
In Gothenburg, all buses are of the same type.

Route EL16 runs between Eriksbergstorget and Sahlgrenska Sjukhuset; it has a route
length of 11 km; and a return trip takes approximately 56 min. Route R55 is a subset of
route EL16; it runs between Teknikgatan and Sven Hultin Plaats; it has a route length
of 7.6 km; and a return trip takes approximately 50 min. Another difference between
EL16 and R55 is in the charging system used. While both routes are essentially the same,
the buses traveling along the longer EL16 route will be charged using the 450 kW ABB
superfast charger, while the buses traveling along the shorter R55 route will be charged
using the Siemens 290 kW fast charger. A final difference is in the speed of the vehicle. The
buses traveling on route EL16 travel on average more than 5 km/h faster than the buses
traveling on route R55. As a note, although the buses on route EL16 will be charged using
the 450-kW charger, the bus itself will limit itself to 290 kW; thus, the charger will only be
loaded by two-thirds. On the other hand, the 290-kW charger on route R55 will be fully
loaded during charging.

Figure 10 shows the mission scenario, consisting of the elevation, velocity, and pas-
senger profiles of the two routes, which are inputted into the simulation platform. The
elevation and velocity profile are shown for one return trip, while the passenger profile is
shown for the whole day. The same assumptions regarding the passenger profile as those
given for Barcelona are also applied in Gothenburg.

Figure 8. Seasonal climate of the city of Gothenburg.
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Table 6. Scenario details of the routes in Gothenburg city.

Parameters Route 1 Route 2

Route R55 EL16

Max. acceleration on flat ground (m/s2) 1.5 1.5
Operational time per day (h, kms) 13 h, 167 km 20 h, 396 km
Bus frequency (peak hours) Every 10 min Every 5 min
Number of stops per bus line 13 22
Average speed of the bus during peak hour (km/h) 18.24 23.57
Return trip distance (km) 15.2 22
Number of return trips per day 11 18
Total number of buses in route (-) 7 13
Type of buses in route 7 All the buses are of type 2
Ambient temperature (◦C) Min: −2, Max: 22

Charger
Charging Scenario Opp, AC/DC CCS2 Opp, AC/DC CCS2
Max. Number of Intermediate Charging Instances per Cycle 2 2
Max. Charging Power for On-road Superfast Charging (kW) 290 450
Available Superfast Charging at Terminals or Stops (mins) 8–10 4–5
Power Charging for Overnight Stations (kW) 150 150
Available Overnight Charging Time (h) 1–10 1–10
Grid Capacity (kVA) >350 >350
Cost of Connection of Charger to Grid (€/charger) 200,000 200,000
Lifetime of Charger (years) 15 15

Figure 9. The map of Gothenburg city, showing routes R55 and EL16 [23,24].
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Figure 10. The road elevation, velocity, and passenger profiles for routes (a) R55 and (b) EL16.

3.3. Types of E-Buses in the Fleet

This section gives an overview of the E-buses that were considered in the simulation.
Four types of buses were considered: two 18 m buses and two 12 m buses. The 18 m
buses use lithium titanate (LTO) batteries as their ESS, while the 12 m buses use lithium
ferro-phosphate (LFP) and lithium nickel-manganese-cobalt (NMC) batteries. Furthermore,
for the 18 m buses, compared to the size of the bus, the capacity of the ESS is in the low end
and will barely allow two return trips, while the 12 m buses have the capacity to allow for
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multiple return trips. On the other hand, the LTO battery chemistry of the ESS in the 18 m
buses allow for superfast charging using high-powered chargers. These factors need to be
considered by the charging management system (CMS) to ensure that the SoC do not fall
below the OEM specified constraints. Table 7 lists the specifications of the different types
of buses that are considered for simulation.

Table 7. Types of buses and their unique specifications considered for the fleet simulation.

Parameters Type I Type II Type III Type IV

Vehicle
Dimensions (m) 17.97 × 3.35 × 2.55 12 × 3.3 × 2.55 18.73 × 3.4 × 2.55 12 × 3.51 × 2.55
Empty mass (t) 19 11.9 18.7 12.9

Maximum mass (t) 30 19 28 19.1

Gearbox
Final gear ratio 5:75 5:77 1:6 1:4

Gear efficiency (%) 92 97 95 96

Electric Machine
Motor type Induction Permanent magnet AC synchronous Permanent magnet

Cont. power (kW) 170 185 235 153
Base speed (rpm) 4075 4200 1000 600
Max. torque (Nm) 400 425 2300 2500

Efficiency (%) LuT LuT LuT LuT
Max. DC Link (V) 780 660 700 690
Min. DC Link (V) 520 420 700 470

ESS
Cell technology LTO LFP LTO NMC
Capacity (Ah) 160 336 180 300
Max. SoC (%) 100 90 100 90
Min. SoC (%) 15 10 15 10

Usable energy (kWh) 90 160 108 138
Max. Voltage (V) 780 768 700 680
Min. Voltage (V) 520 422 700 470
Max. charge rate 5C 3.75C 5C 2.5C

Max. discharge rate 10C 7.5C 10C 5C
Lifetime (years) 15 8 15 8

Mass (kg) 1340 1440 1575 1980

Auxiliary
Voltage (V) 24 600 24 24
Power (kW) 25 28 44 (heat), 39 (cool) 25

Operational
Max. speed (km/h) 50 80 50 40

Annual distance (km) 45,000 45,000 45,000 45,000
Vehicle lifetime (years) 15 15 15 15

4. ECO Features

This section elaborates on the various economy or “ECO” features and their role in
reducing the energy consumption of the vehicle, the TCO of the fleet, and the load on
the grid. The ECO features are energy-saving techniques that can be implemented in a
vehicle’s energy management, thermal management, and charging management systems
to lower the energy utilization rate, given in kWh/km, when the vehicle is in operation.
This would not only lead to an increase in the electric driving range of the vehicle, but also
lead to a reduction in the lifetime TCO of the vehicle. ECO features usually decrease the
performance of the vehicle in certain aspects, e.g., using less responsive acceleration to
decrease overall energy requirements. Three ECO features are implemented in ASSURED,
namely, ECO-comfort, ECO-driving, and ECO-charging. These ECO features are described
in more detail in the following subsections.
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4.1. ECO-Comfort

ECO-comfort is a functionality that is developed to provide energy savings by opti-
mizing the thermal system of the electric vehicles. It is based on the principle of providing
the least amount of comfort to the maximum number of passengers, as expressed in terms
of the predicted mean vote (PMV) and predicted percentage dissatisfied (PPD), in an
attempt to minimize the power consumption of the HVAC system [25]. The PPD versus
PMV chart, shown in Figure 11, predicts the average value that a group of people would
rate their comfort level at a given ambient condition. A value of −3 indicates a “very
cold” sensation, +3 indicates a “very hot” sensation, and 0 indicates a “neutral” sensation.
For this range of sensations, the PPD will describe the percentage of people, on average,
that will be dissatisfied. Because the chart deals with people’s perceptions, which are
subjective, it is impossible to obtain a PPD of 0%, even when the ambient conditions are
ideal. This indicates that it is impossible to satisfy everyone. Furthermore, the chart shows
that people, on average, are initially resistant to feelings of discomfort under deteriorating
conditions. Thus, a PMV increase by 0.5 from 0 only increases the PPD by 5%, while a
similar PMV increase from 0.5 will increase the PPD by almost 25%. Thus, this allows
ECO-comfort algorithms a wide range of cabin conditions that can be set to derive the
maximum energy savings.

Figure 11. Relation between the Predicted Mean Vote and Predicted Percentage Dissatisfied [25].

The ECO-comfort functionality that is defined in this project has the following aspects:

• A variable temperature setpoint that considers the energy consumption of the HVAC
system and the comfort of the passengers. Instead of having one fixed setting of the
temperature inside the bus, a variable setting can save energy required for conditioning
the air inside the bus. Three settings are defined, as shown in Figure 12:

◦ A lower comfortable temperature bound that defines the lowest temperature
that will be bearable to the passengers in the bus. This setting is mostly applied
during winter conditions with respect to energy consumption.
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◦ An upper comfortable temperature bound that defines the highest temperature
that will be bearable to the passengers. This setting is mostly applied during
summer conditions with respect to energy consumption.

◦ The ideal temperature for comfort. This setting defines the temperature at
which the comfort of a group of passengers is at its highest level.

• Variable air refresh rate: Depending on the temperature and humidity difference
between the ambient conditions and the desired conditions inside the bus, it can
require a large amount of energy to condition the air that is flowing into the bus from
outside. Therefore, energy can be saved if the air inside the bus is recirculated, instead
of taken from the outside. The functionality that is implemented in ECO-comfort is to
optimize this fresh air flow, depending on the number of passengers that are inside
the bus, instead of having one fixed value to cover most of the use conditions.

• Like the air refresh rate, the fan power can be adjusted to the number of passengers
inside the bus. If there are fewer passengers inside the bus, the fan power and the
corresponding air flow do not need to be at the maximum value. This will save energy
that is required by the ventilation system.

• Vehicle preconditioning: The aim is to use the HVAC system to its full capacity only
when the bus is connected to the charger, so the HVAC system draws the power from
the charger, instead of its ESS. With preconditioning, the HVAC system will track
the desired setpoint temperature, which is highly energy intensive, when the bus is
charging. When the bus is not connected to the charger, the HVAC system will merely
regulate the temperature around the desired setpoint, which requires minimal energy
expenditure. With preconditioning, the capacity of ESS can be mostly directed toward
increasing the distance that the vehicle can travel on a single charge.

Figure 12. ECO-comfort temperature settings.

The comfort of the passengers, mentioned above, depends on many parameters, such
as air humidity, air velocity, radiation, seasonal effects, and human metabolism. The
combination of these factors does not have the same effect on all people’s comfort, as
different people will experience the same environment differently. Therefore, it is not
possible to configure the cabin environment such that it will make all passengers feel
comfortable; thus, the goal is to keep most of the passengers satisfied. This allows the
ECO-comfort algorithm a hard PMV limit of ±1.5, within which to deploy energy-saving
techniques. ECO-comfort has been studied in greater detail in [16] for three European cities
with different climatic conditions.

4.2. ECO-Driving

ECO-driving is an energy-saving technique that utilizes velocity modification to
achieve smoother changes in velocity using ramped acceleration. This acceleration is made
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more manageable by the EVs’ tractive powertrain; thus, the vehicle can efficiently and more
accurately track the modified velocity profile, unlike ICE-based vehicles. To implement
an efficient ECO-driving strategy, the velocity modification takes the following steps to
reduce the energy expenditure of the vehicle:

• Avoid sudden acceleration and deceleration using a ramped approach.
• Limit the maximum acceleration to 1 m/s2.
• Limit the maximum velocity to 15 m/s.
• Ensure that the distances tracked by both velocity profiles (i.e., the original velocity

profile and the eco velocity profile) are synchronized.

Figure 13 illustrates how the velocity modification approach is implemented in the
simulation using the abovementioned criteria, resulting in smoother changes in the vehicle
speed, while, at the same time, ensuring that the same distance is tracked by the vehicle.

Figure 13. ECO-driving profile generated for a standard driving cycle [26].

The second method by which the ECO-driving technique can improve the energy
efficiency of the vehicle is by optimizing the regenerative braking strategy (RBS) by actuat-
ing the electric motor in various modes during the braking process. In [26], the different
modes of actuation are described in detail, and the resulting ability of the vehicle to track a
given velocity profile under the various modes is evaluated and compared. It is shown
that, depending on the specific situation, a given mode of actuation will perform better.
Thus, the best method to recover the maximum energy from regenerative braking involves
continuously tuning the mode of actuation, depending on the (1) current velocity of the
vehicle, (2) the desired deceleration, and (3) the grade of the road. Furthermore, RBS is
only effective in recovering energy when the vehicle has sufficient momentum; therefore, it
is implemented only if the vehicle is decelerating from speeds greater than 5 m/s. For this
reason, the energy savings achieved using ECO-driving is highly dependent on the average
velocity of the E-bus traveling on a given route. Therefore, buses driving on routes H16
and L33 in Barcelona, where the average route velocities are lower (Table 5), are expected to
have less energy savings due to ECO-driving, as compared to the buses driving on routes
R55 and EL16 in Gothenburg, where the average route velocities are higher (Table 6), which
will have higher energy savings due to ECO-driving.
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4.3. ECO-Charging

ECO-charging is an energy-saving technique that can be used during battery charg-
ing to reduce the battery cooling energy expenditure using pulsed charging, instead of
continuous charging. The frequency and duty cycle of the pulses have been tuned via
optimization to achieve a combination that provides the minimum energy expenditure for
battery cooling, as shown in Figure 14.

Figure 14. Battery loss as a function of the charging pulses and charging rate.

Figure 14 shows the cooling energy required to keep the battery temperature within
its optimum operating temperature range, when it is being charged for a total duration of
600 s and allowed a total duration of 1400 s to cool down. However, the mode of charging
can either be continuous, i.e., one pulse, or the charging can be broken up into multiple
pulses with an equal duration. Regardless of the size of the pulse used, the total charging
duration remains 600 s, and the total cooldown periods remains 1400 s. The figure shows
that the minimum cooling energy is required when there are 15-s pulses, followed by
a 35-s cooldown period. This reduction in the cooling energy can be explained by the
fact that during pulsed charging, the share of the passive cooling is higher, as heat is not
continuously generated due to power losses; for continuous charging, there is a continuous
generation of heat, leading to a more active cooling by the HVAC system.

Furthermore, as Figure 14 shows, there are significant energy savings when the
pulsed charging technique is implemented for high C-rate charging, whereas low C-rate
charging does not see much benefit. Thus, it is desirable to implement pulsed charging in
opportunity chargers, while overnight chargers can use continuous charging. Low C-rate
charging requires less battery cooling than high C-rate charging, because in low C-rate
charging, less current is used during charging, resulting in fewer losses due to the series
resistance of the ESS. Thus, ECO-charging also attempts to maximize the utilization of the
overnight charger for charging by minimizing the time the E-bus spends charging at the
opportunity charger. This allows the SoC of the ESS to drift down towards the minimum
allowable SoC by the end of the day, and the overnight charger is then used to bring the
SoC of the ESS back to its maximum, as shown in Figure 15.

Figure 15. The SoC profile of the ESS charged using the ECO-charging technique.
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The paper investigates the seasonal effects of climate on the ECO-charging technique
described in [20] and the cooling power needed to keep the ESS within their optimum
operating ranges. Colder temperatures will aid in battery cooling; thus, it takes longer
for the battery temperature to exceed a predefined setpoint, which will activate the ECO-
charging process; thus, the charging tends to be continuous in cold weather. One of the
downsides of ECO-charging is that battery charging takes longer to complete, leading to
costs associated with not following the bus schedule; however, the reduction in energy
expenditure, combined with the increase in battery longevity, compensates for it. ECO-
charging has another advantage when implemented on a large scale: groups of opportunity
chargers can be synchronized, so that even when they operate simultaneously, the load on
the grid is only that of a single opportunity charger. The CMS can do this by phase shifting
the charging pulses, so that when one charger is charging a vehicle, the others in the group
are idling.

5. Multi-Objective Optimization Strategy

Optimization is an integral part of the design strategy; it offers the best solutions,
while also respecting the key constraints in a problem formulation. In [27], optimization
was used for the electrification planning of electric bus fleets to determine the type and
number of chargers and electric buses in the city of Dubrovnik, Croatia. Similarly, in [28],
optimization was used to estimate the total number of electric buses and charging resources
in the design of a full bus network in the city of Guadalajara, Mexico. This paper presents
the results and analysis of all the UC simulations of E-buses in the ASSURED project for the
cities of Barcelona and Gothenburg, including single bus simulations and fleet simulations.
However, these simulations were carried out in compliance with the specifications provided
by the OEMs of the E-buses and the chargers and to fulfil the requirements of the CBOs.
Nevertheless, it is also of interest to determine the best or optimal configuration of H/W,
which will minimize two key parameters that are of interest to the CBO and the distribution
system operator (DSO), namely, the TCO and the impact on the local grid. One way to do so
is by implementing the ECO-strategies described in the previous section. In this section, an
optimization approach will be considered to determine which H/W configuration results
in the least TCO and grid impact.

The optimization parameters to be considered are the rated power of the opportunity
and overnight chargers, the duration of opportunity charging, the number of opportunity
chargers, and the duration of the charging pulse (when ECO-charging is considered). Since
the optimization process takes a very long time to complete for large fleets of vehicles
(36 E-buses in Barcelona and 20 E-buses in Gothenburg), it was performed only for the
worst mission scenario, which for Barcelona occurs during the month of July (heavy cabin
cooling required), while for Gothenburg, it occurs during the month of January (heavy
cabin heating required). Furthermore, the optimization was completed without any ECO
features and with all the ECO features activated. The results were compared with the
appropriate UC fleet results. Finally, the fleet optimization encompassed all the routes of a
given city.

The optimization algorithm, implemented in [20], is used in this study, but with the
following key differences:

• Four types of buses, including two 12 m buses and two 18 m buses, are considered in
this paper, while the buses in the previous research were all the same type.

• Unique charging durations are considered in this paper for each bus type, while in the
previous study, a single charging duration was used for all buses.

• The previous research only considered one bus route in one city, while this paper
studies two cities with completely different climates and two routes within a city
that have different characteristics to each other in terms of the speed, grade, and bus
schedules.



Sustainability 2021, 13, 7865 22 of 42

• The previous study considered only discrete power levels for opportunity and depot
chargers, which limited the optimized results; therefore, in this paper, the power level
of the charger is continuously varied within constraints.

• The previous research only considered optimization without considering the ECO-
strategies, while this paper also studies the effect of ECO features on the optimiza-
tion result.

Other than the differences listed above, this paper also modifies the optimization
algorithm to feature a novel convergence criterion to exit the iterative loop. Despite the
improvements considered in this paper, there are still some deficiencies, including the fact
that all the ESS components are considered to be new and have full capacity, and the effects
of battery ageing on the optimization process have not been studied. The effect of battery
sizing in terms of the energy needs has also not been considered.

5.1. Improved Simple Optimization Using a Novel Convergence Strategy

Simple optimization (SOPT) is a meta-heuristic algorithm, like the Genetic Algorithm,
which uses a random set of parameter values within the solution space to ensure that that
optimization result does not get stuck in a local minimum. SOPT consists of an exploratory
and an exploitation stage within each iteration, represented by the controlling parameters,
c1 and c2. The value of c2 is set as half of the value of c1 to lessen the dependency of the
algorithm on these controlling variables, and c1 is set to be between 1 and 2 to decrease
the number of iterations required to reach the optimum solution. Equations (8) and (9)
describe the method used to calculate a new solution during each iteration, and Figure 16
depicts a flowchart describing the algorithm.

xi,m,new = xi,m,best ± c1 × Ri,m (8)

xi,m,new = xi,m,best ± c2 × Ri,m (9)

where xi,m,best is the value that represents the best solution in the current iteration, i, for
a given optimization parameter, m, and Ri,m is a randomly generated number that is
normally distributed around zero, with a standard deviation of σm for that parameter
in the solution space. The solution space, n, is an array maintained to hold the best
combinations of optimization parameters, i.e., the combinations that give the lowest values
for CTOT. To ensure sufficient variability within the optimization parameters, for the size
of n, n ≥ (m + 1) or n ≥ 10, whichever is greater. The maximum number of iterations, d,
is set to 50, after which the optimization will stop. In each iteration, four new solutions
are considered. Since the solutions are independent of each other, they can be simulated
in parallel to improve the optimization speed by a factor of four. To improve the SOPT
algorithm (iSOPT) and ensure that the best solution is truly a global minimum, the best
solution is replaced by a new randomly generated solution if the best solution remains
unaltered for a certain number of iterations, Rc, given by Equation (10).

Rc = 0.5 ×m × n (10)

where m is the number of optimization parameters, and n is the size of the solution space.
In [29], the SOPT algorithm handles constraints by calculating two fitness scores

that must be minimized, the optimization fitness score, based on the minimization of
the desired output, and a constraint fitness score, which checks how well the value for
each optimization variable falls within their given constraints. The minimization of the
constraint fitness score is prioritized above the minimization of the optimization fitness
score to ensure that the optimized solution does not contain values that fall outside its
parameter’s constraints. However, in this paper, for simplicity, instead of calculating a



Sustainability 2021, 13, 7865 23 of 42

separate fitness score for the constraints, all the newly calculated values in Equations (8)
and (9) are bound within their constraints during each iteration, as shown in Equation (11).

xi,m,new = | UBi,m if xi,m,new > UBi,m
| LBi,m if xi,m,new < LBi,m
| xi,m,new otherwise

(11)

where UBi,m and LBi,m are the upper and lower bounds of the constraints, respectively.
Once the new optimization parameters are simulated, the result is added to the solution
space. Then, the combined set is sorted, and the worst four results are discarded.

Figure 16. Flowchart describing the iSOPT algorithm.
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This paper introduces a novel convergence strategy into the iSOPT algorithm, which
will allow it to exit the iterative optimization loop. After every iteration, as the solution
space is updated with the best solutions, the standard deviation of the optimization
parameters within the solution space keeps decreasing. The algorithm will monitor the sum
of the standard deviation, Σσm, of all the optimization parameters, and if they fall below
10% of the initial Σσm, or if the derivative of the Σσm is zero for three consecutive iterations,
then it is assumed that the solution has converged, and the algorithm will exit the iterative
optimization loop. Figure 16 illustrates the iterative process of the iSOPT algorithm. The
iSOPT algorithm is initialized with a random population set of the optimization variables in
the solution space. Five variables are considered in this paper: the number of opportunity
chargers, Nopt, opportunity charger power level, Popt, opportunity charging duration,
Dopt, overnight charger power level, Pdep, and ECO-charging pulse duration, pls. Each
bus type in the fleet is represented with its own Dopt, and each route has its own Nopt and
Popt. Thus, there are multiple values of these optimization parameters.

The number of depot chargers and the charging duration of the depot chargers are
dependent on other simulation factors and are thus not considered for optimization. Each
optimization parameter is initialized with random values, which are uniformly distributed
between their upper and lower bounds. Out of the five optimization variables, only
Nopt, the number of opportunity chargers, is a discrete variable, while the remaining four
variables are continuously varying and can take any values in between their upper and
lower bounds. For the discrete optimization parameters, Nopt, the value calculated using
Equations (8) and (9), i.e., xi,m,new, will be rounded to the nearest integer, which will ensure
that the number of chargers required is not a fractional value. Table 8 lists the upper and
lower bound for each parameter and other constraints.

Table 8. The simulation constraints for the fleet based on the OEM and CBO requirements.

Parameter Lower
Bound

Upper
Bound Parameter Lower

Bound
Upper
Bound

Barcelona
Nopt_L33 1 2

Gothenburg
Nopt_R55 1 2

Nopt_H16 1 2 Nopt_EL16 1 2
Popt_L33 200 kW 600 kW Popt_R55 200 kW 600 kW
Popt_H16 200 kW 600 kW Popt_EL16 200 kW 600 kW

Pdep 50 kW 150 kW Pdep 50 kW 150 kW
pls 5 s 45 s pls 5 s 45 s

Dopt_L33_Type1 60 s 420 s Dopt_R55 60 s 600 s
Dopt_L33_Type2 60 s 420 s Dopt_EL16 60 s 300 s
Dopt_L33_Type3 60 s 420 s
Dopt_L33_Type4 60 s 420 s SoC constraints
Dopt_H16_Type1 60 s 480 s Barcelona 15% 100%
Dopt_H16_Type2 60 s 480 s Gothenburg 10% 90%
Dopt_H16_Type3 60 s 480 s
Dopt_H16_Type4 60 s 480 s

The iSOPT algorithm used in [16] will be used here to minimize the cost function
shown in Equation (12), defining the weight given to each objective towards the over-
all score.

CTOT = Grid_day × Σ(TCO_fleet)/Σ(NRG_fleet) (12)

CTOT = CTOT + Σ(eSoC_LB − SoC_Min) + Σ(eSoC_UB − SoC_Fin) (13)

where TCO_fleet is the average total cost of operation of the fleet (€/km), NRG_fleet is the
average energy utilization of the fleet (kWh/km), and Grid_day is the daily cumulative
energy consumption from the grid (kWh). The unit of CTOT is €, which is the modified
energy tariff. The second part of the cost function, CTOT, is the penalty function applied
when the simulation results exceed the constraints. There is a strict requirement to fulfil the
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SoC requirements of the ESS; these constraints are placed by the OEM to ensure a normal
operation of the ESS. If the daily minimum SoC falls below the SoC lower bound, then an
exponential penalty is applied to the excess. Furthermore, it is a requirement that the ESS
is fully charged to its upper bound SoC by the end of the day, and if the simulation fails to
do so, another exponential penalty is added to the cost. This ensures that the simulation
respects the constraints placed by the OEM and the CBO.

The algorithm allocates the highest priority to TCO minimization, followed by grid
impact and vehicle energy utilization, to calculate the overall score, which is minimized.
The goal of the algorithm is to determine the optimal number of opportunity chargers, the
rated power of the opportunity and overnight charger, as well as the opportunity charging
duration that will minimize CTOT.

5.2. Monte Carlo

Monte Carlo simulation is a statistical technique by which a quantity is calculated
repeatedly, using randomly selected input configurations for each simulation [30]. Typical
Monte Carlo simulations are performed to find the likelihood of all possible outcomes;
however, in this paper, the Monte Carlo simulation was be performed as a “brute-force”
technique to compare the results of iSOPT and validate the results of the optimization.
The input parameters randomly vary between the upper and lower bounds of a uniform
distribution. The upper and lower bounds are presented in Table 8. To have sufficient
confidence in the outcome of Monte Carlo simulation, it is necessary to take a large sample
size to ensure that all possible input combinations are covered. However, since each
individual simulation takes a set amount of time to complete, the sample size cannot be
too high; otherwise, the entire Monte Carlo simulation will take an excessively long time
to complete. Nevertheless, Monte Carlo simulations can be accelerated using parallel
processing, as individual simulations are independent of each other and do not share data.
Using the command, “parsim”, in MATLAB, individual simulations can be launched in
parallel, and for a typical octo-core processor, seven simulations can be run in parallel,
leaving one core for supervisory purposes. For this paper, a sample size of 250 was used for
the Monte Carlo process for the Barcelona fleet simulation and 500 for the Gothenburg fleet
simulation; since the fleet size in Barcelona is twice the size of the Gothenburg fleet size
and thus takes almost double the time to complete, the number of simulations are halved.

The cost function defined in Equation (12) is used to evaluate the suitability of each
input combination, and the results are sorted to determine the best input combination that
will result in the lowest cost.

6. Results and Discussion

This section presents the results of the UC simulations for single buses and fleets, as
well as the results of the optimization. The effects of the ECO features are also considered.

6.1. Use Case Results for Single Buses

For the single bus results, a series of figures depict the performance of the ESS in meet-
ing the energy demands of the vehicle while complying with the UC. Figures 17–19 present
the typical power demands for routes L33 and H16 in Barcelona and route R55 in Gothen-
burg, respectively, based on the vehicle complying with a given mission profile in Section 3.
Since the worst power requirement is being considered, the result for Barcelona is shown
for summertime, while the result for Gothenburg is shown for wintertime. Figures 20–22
present the SoC response of the ESS for these power profiles, when the charging duration
at the opportunity charger is minimized.
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Figure 17. Power requirement for route H16, Barcelona for (a) an 18 m bus (Type 1, 3) and (b) a 12 m bus (Type 2, 4).

The simulation assumes that the entire duration allowed for charging (see Tables 5 and 6)
and that the E-bus is charged once per return trip. It can be observed that the capacity of the
ESS in the 18 m buses is barely sufficient to cover the energy requirements for one return
trip, more than 40% DoD in Barcelona route L33, and more than 60% DoD in Barcelona route
H16; however, it is compensated by the fact that the battery chemistry of the bus’s ESS allows
for really fast charging (see Table 7) and the battery can thus get fully charged within the
allocated charging duration, when a superfast opportunity charger (600 kW) is used. On the
other hand, the 12 m buses have ESS capacities that would allow for 3 return trips without
charging in Barcelona route H16 and 4 return trips without charging in Barcelona route L33
and Gothenburg route R55, so there can be flexibility in their charging schedule. The CMS can
either allocate a lower priority for charging for the 12 m buses if the grid is overloaded when
the bus requires charging, so the bus can either skip charging or the bus can be charged for
shorter durations, i.e., a quick top-up charge. Table 9 lists the seasonal energy requirements
for the buses in cities driving in normal mode, while Table 10 lists the TCO values. The effects
of the ECO features are discussed in the following subsection.
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Figure 18. Power requirement for route L33, Barcelona for (a) an 18 m bus (Type 1, 3) and (b) a 12 m bus (Type 2, 4).

Figure 19. Power requirement for route R55, Gothenburg for a 12 m bus (Type 2).
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Figure 20. The ESS SoC profile of route H16, Barcelona for (a) an 18 m bus (Type 1, 3) and (b) a 12 m bus (Type 2, 4).

Figure 21. The ESS SoC profile of route L33, Barcelona for (a) an 18 m bus (Type 1, 3) and (b) a 12 m bus (Type 2, 4).

Figure 22. The ESS SoC profile of route R55, Gothenburg for a 12 m bus (Type 2).

An interesting fact that can be observed is that for hotter climates the energy require-
ment is greater during the summer and lower during the winter; however, for colder
climates, it is the reverse. The route’s elevation and speed profile also have an impact on
the energy requirement, with L33 generally requiring less energy than H16, while R55 has
the lowest energy requirement. Finally, the results show that 18 m buses have greater than
50% higher energy requirements, compared with 12 m buses.
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Table 9. Seasonal energy usage rate (in kWh/km) of buses for different cities and routes.

Bus Barcelona Gothenburg

Summer Route L33 Route H16 Route R55

Type 1 2.26 2.56 –
Type 2 1.50 1.54 1.46
Type 3 2.32 2.62 –
Type 4 1.37 1.47 –

Winter
Type 1 1.83 1.94 –
Type 2 1.37 1.39 1.92
Type 3 1.98 2.13 –
Type 4 1.16 1.20 –

Table 10. Seasonal TCO (in €/km) of buses for different cities and routes.

Bus Barcelona Gothenburg

Summer Route L33 Route H16 Route R55

Type 1 1.77 1.78 –
Type 2 1.32 1.21 1.29
Type 3 1.53 1.41 –
Type 4 1.41 1.41 –

Winter
Type 1 1.76 1.77 –
Type 2 1.32 1.21 1.30
Type 3 1.52 1.40 –
Type 4 1.40 1.40 –

6.2. Use Case Results for Bus Fleets

While the single bus results are presented from the vehicle point of view (POV), the
results for the fleets are presented in terms of their impact on the local grid. Figure 23
presents the load profile on the local grid for the city of Barcelona during summer and
the load profile on the local grid for the city of Gothenburg during winter. Two different
seasons were chosen for the cities not to compare the seasonal effects, but because the aim
is to present the worst load that the grid will experience for each city. For a hot climate
like Barcelona, the worst load occurs during summertime, while for a cold climate like
Gothenburg, the worst load occurs during wintertime. With prior knowledge of the bus
schedules, the grid load profile for Barcelona and Gothenburg gives an indication of how
many chargers are actively charging at any given moment.

As mentioned in Tables 5 and 6, the city of Barcelona was simulated with two oppor-
tunity chargers (FC in Figure 23) and four overnight chargers (OC in Figure 23), while the
city of Gothenburg was simulated with four opportunity chargers and three overnight
chargers. Furthermore, Figure 23 shows the effect of charging different types of buses
(Barcelona), compared with charging a single type of bus (Gothenburg). The load profile of
Gothenburg appears more consistent in the load pattern than that of Barcelona. Addition-
ally, in Barcelona, the ESS of 18 m E-buses are charged to 100% SoC. Thus, they experience
constant voltage charging for part of the time, which appears as exponential decay curves
in the profile. On the other hand, in Gothenburg, all ESS are charged to only 90%. Thus,
the charging pattern is that of constant current charging.
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Figure 23. Grid electricity consumption profile by the fleets of E-buses in the cities for (a) Route L33 and H16 in Barce-lona
during summertime and (b) Route R55 and EL16 in Gothenburg during wintertime.

Table 11 shows the energy requirements and the TCO for the two cities. One final
observation in the figure that is worth noting is the current load on the grid. In Barcelona,
600 kW superfast chargers are used during opportunity charging. Thus, when two chargers
are active simultaneously, the grid experiences a load of 180 A of current. Conversely, in
Gothenburg, 290 kW fast chargers are used as the opportunity charger. Thus, it requires
all four chargers to be active simultaneously to exert the same load on the grid, which
happens infrequently. In this regard, from the grid POV, it makes more sense to have two
290 kW opportunity chargers with twice the charging duration allocated, instead of one
600 kW opportunity charger.

Table 11. Comparison of the energy requirement and TCO for the fleets of buses.

Barcelona Gothenburg

Winter Summer Winter Summer

Grid Impact (MWh) 10.7 13.5 15.2 12.3
Energy Usage Rate

(kWh/km/bus) 1.65 2.07 1.88 1.47

TCO (€/km/bus) 0.93 0.94 0.90 0.89

One interesting fact is that the TCO values shown in Table 11 are much lower than the
TCO values provided in Table 10. This is because the TCO in Table 10 is calculated only for
one bus, using one opportunity and one overnight charger, while the TCO in Table 11 is
calculated based on fleets of buses sharing the same opportunity and overnight chargers.
Thus, the capital costs are also shared between the buses, and the average TCO per bus is
much lower. As for the energy usage rate, the values provided in Table 11 are the average
of all buses and routes for that city in each season.
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6.3. Effects of the ECO Features

This subsection presents how ECO features reduce the TCO, grid impact, and energy
consumption rate and considers the impact that the driving speed, climate, and charging
rate have on the effectiveness of the ECO features. Figure 24 analyzes the effects of
ECO-comfort and ECO-driving; from the data, it can be observed that ECO-comfort is
more effective as an energy saving mechanism for hot weather. Thus, a warm climate
like Barcelona has more energy savings, because the ECO-comfort is higher than in a
cool climate like Gothenburg. Furthermore, summertime energy savings are greater than
wintertime energy savings. This suggest that the cooling mode is more optimized in the
HVAC system than in the heating mode. As for ECO-driving, the energy savings are
greater when ECO-driving is activated in a route with higher average speeds. In Barcelona,
on route H16, with an average speed of 9.52 km/h, almost no effect is observed, while on
route L33, with 11.64 km/h, a modest 5~7% energy saving is achieved. On the other hand,
in Gothenburg, the routes have higher average velocites, with route R55, with an average
speed of 18.24 km/h, showing 11~12% savings.

Figure 24. Effect of climate on ECO-comfort effectiveness and driving speed on ECO-driving
effectiveness for (a) a Mediteranean climate with average route speed of 3.23 m/s and (b) a Cool
temperate climate with average route speed of 5 m /s. In the figure, numbers within brackets
represents negative numbers.
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Figure 25 visualizes how ECO-charging works on the ESS; it is activated when the
temperature of the ESS exceeds a set threshold, which is slightly lower than the threshold
when the cooling system will be activated to keep the temperature of the ESS within its
normal operational limits. Since ECO-charging is implemented using pulsed charging, the
battery gets a chance to cool down naturally in between pulses. This reduces the load on
the cooling system. As can be seen from the figure, the required cooling power is lower
using ECO-charging and almost non-existent during winter, because the cold weather
greatly aids in cooling when the ESS is not actively generating heat. This results in a
lower internal temperature, even during high C-rate charging of the ESS. As a result, the
electricity consumption for cooling purposes is reduced by up to 17.84%, as can be observed
in Figure 26. Furthermore, the reduction is higher for high C-rate charging, charging during
winter months, and even in cooler climates. This is because the cold weather will help
the battery cool down more effectively than warm weather. It is interesting to note that
the climate requirements for the effectiveness of ECO-charging is the opposite of the
requirements for the effectiveness of ECO-comfort, even though the same HVAC system
is used for both purposes; this is because ECO-charging relies on ambient conditions for
cooling purposes, while ECO-comfort must act against those conditions to regulate the
temperature in the enclosed cabin.

Figure 25. The effect of ECO-charging on the ESS cooling energy requirement.

ECO-charging has one important advantage over the grid POV: it is instrumental
in reducing the peak load on the grid. Because ECO-charging is implemented as pulsed
charging, it is possible for groups of opportunity chargers to synchronize with each other,
so that when one charger is supplying a charging pulse to the ESS, the others will remain
idle, i.e., they will timeshare the charging process. Thus, multiple opportunity chargers
can be charging simultaneously, while providing a combined load of only one opportunity
charger to the grid. Charger synchronization was not developed for this project; however,
coincidental timesharing does occur when multiple chargers are in operation using ECO-
charging, and this has the effect of lowering the average load on the grid by approximately
10 A to 20 A, compared to normal-mode charging, as shown in Figure 27. Since the
reduction takes place during the opportunity charging phase, it must be made up during
overnight charging; thus, lowering of the peak grid load leads to spreading out of the
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charging duration by transferring it from higher power opportunity chargers to lower
power overnight chargers. It should be noted that since an active synchronization of the
opportunity charger was not conducted, the load reduction is slight and occurs mainly
due to the pulses; with active synchronization, we can expect a significant reduction in the
peak grid load. Future research will investigate the extent of this reduction using different
charger synchronization techniques.

Figure 26. Effect of climate on the ECO-charging effectiveness in reducing the battery cooling energy requirement during
(a) Wintertime and (b) Summertime. In the figure, numbers within brackets represents negative numbers.

Figure 27. Effect of ECO-charging on the peak load on the grid.

6.4. Optimization Results

While the previous subsection presented the results for buses and chargers whose
configurations were specified by their respective OEMs, this subsection will explore the
optimal configurations that would lower the TCO and energy requirements of the entire
fleet in a city. The following variables in the fleet configurations were studied: charger
power rating, charging duration, number of chargers, and charging pulse duration for
ECO-charging, as listed in Table 8. The E-bus parameters were considered to be constant
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and unchanging for the purposes of the simulations, although the results could have
been made more meaningful if the battery sizing was also considered. Another fact is
that the optimization was conducted during the period when the energy requirement
was at its worst, which is summertime for Barcelona and wintertime for Gothenburg.
Table 12 lists the optimized configuration, simulated as Monte Carlo or iSOPT for Barcelona
and Gothenburg.

Table 12. The optimized charger configuration to cover the worst mission scenario.

City of Barcelona Normal Mode All ECO Mode

Monte Carlo L33 H16 L33 H16

Opportunity chargers (-) 2 2 2 2
Charging duration (s):

-Type 2 Bus
-Type 4 Bus
-Type 3 Bus
-Type 1 Bus

112
391
385
380

353
261
477
360

80
97

354
368

80
258
265
347

Opportunity charger power (kW) 296 409 279 277
Overnight charger power (kW) 90 125

Improved Simple Optimization
Opportunity chargers (-) 2 2 2 2

Charging duration (s):
-Type 2 Bus
-Type 4 Bus
-Type 3 Bus
-Type 1 Bus

91
420
353
270

132
331
449
480

60
370
215
176

217
461
311
480

Opportunity charger power (kW) 267 235 247 200
Overnight charger power (kW) 101 109

City of Gothenburg Normal Mode All ECO Mode

Monte Carlo R55 EL16 R55 EL16

Opportunity chargers (-) 2 2 1 2
Charging duration (s):-Type 2 Bus 265 289 356 270
Opportunity charger power (kW) 279 277 203 237

Overnight charger power (kW) 125 79

Improved Simple Optimization
Opportunity chargers (-) 1 2 1 2

Charging duration (s):-Type 2 Bus 314 292 181 300
Opportunity charger power (kW) 200 258 209 204

Overnight charger power (kW) 137 86

The specifications of the OEMs and the CBOs in defining the charging requirements,
provided in Tables 5 and 6 are summarized as follows: routes L33 and H16 in Barcelona
are serviced by 1 × 600 kW opportunity charger and 2 × 100 kW overnight chargers;
the maximum opportunity charging duration for route L33 is 420 s, while that of route
H16 is 480 s; route R55 in Gothenburg is serviced by 1 × 150 kW overnight charger and
2 × 290 kW opportunity chargers, with a maximum opportunity charging duration of 480 s,
while route EL16 in Gothenburg is serviced by 2× overnight chargers and 2 × 450 kW
opportunity chargers, with a maximum opportunity charging duration of 300 s; finally,
although 450 kW opportunity chargers are used in route EL16, only a 290 kW charger is
utilized to charge the battery, so the charger operates in reduced load conditions. These
requirements are highly conservative, and the bus fleets in both cities can do with much
less in terms of charging power and charging duration. In Gothenburg, the optimization
was successful in identifying a configuration with lower H/W and power requirements,
leading to significant cost savings, with the same energy requirements. In contrast, in
Barcelona, the optimization algorithms preferred low-power chargers, rather than high-
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power chargers, even if the number of required chargers increased as a result. However,
the total required charging power still decreased by 16%, compared to the non-optimized
version. In opting for lower power chargers, the peak load on the grid also decreases, as
discussed in Section 6.2. Figure 28 summarizes and compares the TCO, the vehicle energy
usage rate and the total electricity consumption from the grid for the different types of
optimization. The TCO and the vehicle energy usage rate is given as the average for the
entire fleet for both routes in each city, while the grid impact is the total daily electricity
consumption for the city.

Figure 28. Fleet optimization results for (a) Barcelona in normal mode, (b) Barcelona with all the ECO features, (c) Gothen-
burg in normal mode, (d) Gothenburg with all the ECO features, and (e) the TCO for all the cases.

It can be concluded, from the data provided in Table 12 and Figure 28, that the charger
configuration specified for the city of Barcelona by the OEMs and CBO is not optimal;
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in fact, there is significant scope for improvement in terms of energy expenditure, even
though the TCO is not so impacted. Thus, many low-powered chargers are better from
the grid POV than a small number of very high-powered chargers. On the other hand, the
charger configuration specified for Gothenburg by the OEMs and CBO are already in their
optimal configuration; however, there is significant scope for reducing the TCO. This is
because the 450 kW chargers used on route EL16 have a higher power rating than necessary
to charge the vehicle in that route; thus, they can be replaced by 290 kW chargers, leading
to significant cost savings.

7. Conclusions

In this paper, a simulation platform was developed using the forward model of an E-
bus powertrain to simulate the various UCs of buses in cities participating in the ASSURED
project. Simulations for single buses and fleets of buses were presented for the cities
of Barcelona and Gothenburg. These two cities were selected for their widely different
climates to test the effect of climate on the thermal management using ECO-comfort and
ECO-charging. Two routes were simulated in each city, which have widely different speed
and elevation profiles, to test their effect on the energy management using ECO-driving.
These three ECO features were implemented to evaluate the energy savings that can be
achieved compared to the baseline condition. Finally, an optimization was carried out to
determine the best combination of charging power, duration, and number of chargers to
minimize TCO and grid impact.

The results showed that ECO-driving is more effective when the average velocity of
the route is higher, with up to 12% energy savings possible on routes with high average
velocities. On the other hand, ECO-comfort optimizes the cooling mode of the HVAC
system better than its heating mode. Thus, hotter climates and/or summertime weather
see better auxiliary energy savings of up to 23%. Furthermore, ECO-charging is more
effective when applied to a higher charging rate (C-rate). Thus, applying ECO-charging to
the charging of LTO batteries at 5 C provides a 5% higher energy saving than applying it to
the charging of NMC batteries at 2.5 C, and it can reduce the cooling energy requirements
by up to 17%. Finally, ECO-charging may also reduce the average load on the grid by more
than 10%, even when deploying multiple superfast chargers, and this reduces the need for
expensive grid reinforcement strategies.

The results of the optimization strategy indicated that the charging H/W configu-
ration adopted by the CBOs in Barcelona city is over-specified in terms of power levels;
thus, a significant saving in the energy requirements was achieved by adopting a more
optimal configuration. The optimized H/W configuration can save energy requirements
by 11% for the normal mode of operation and 21% when all the ECO-features are applied.
Combining the ECO-features, along with the optimized H/W configuration, reduces the
energy requirements by up to a third of the baseline energy requirements in Barcelona city.
On the other hand, the charging H/W configuration adopted by the CBOs in Gothenburg
city is highly expensive; thus, significant savings in the average fleet TCO was achieved
by adopting a more optimal configuration. The optimized H/W configuration reduced
the average fleet TCO by up to 9% when combined with ECO-features. Finally, the opti-
mization results indicate that using a higher number of low-power opportunity chargers
has a lower impact on the grid, on average, than using a smaller number of high-power
opportunity chargers.

Future research will study the techniques for opportunity charger synchronization
while using ECO-charging to maximize the reduction of the peak load on the grid when
multiple superfast chargers are actively charging, without further affecting bus schedules.
Future research may also include a sensitivity analysis of deviations in bus schedules, as
there generally should be some slag in the overall system to allow for broken chargers,
route deviations due to road (re)constructions, and traffic jams. The optimization can be
improved by also optimizing the battery size, alongside the charging H/W configuration
and ECO-features, to see if further reductions in the total fleet energy utilization and
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average fleet TCO can be achieved for a given mission scenario. Finally, future research
will consider the lifetime of components based on actual usage, instead of employing the
assumptions made in this study, to obtain a more accurate calculation of the TCO.
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Abbreviations

BEV Battery electric vehicle
CBO City bus operator
CC/CV Constant current/constant voltage
CCS2 Combined charging system v2
CMS Charging management system
CO2 Carbon dioxide
c-rate Charging rate
CS Charging strategy
DoD Depth of discharge
e-bus Electric bus
ECO Economy
EMS Energy management system
ESS Energy storage system
EV Electric vehicle
GHG Greenhouse gases
HD Heavy duty
Hi-Fi High fidelity
HV High voltage
HVAC Heating, ventilation, and air conditioning
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H/W Hardware
ICE Internal combustion engine
iSOPT Improved simple optimization
LFP Lithium ferro-phosphate
Lo-Fi Low fidelity
LTO Lithium titanate
LuT Lookup table
MD Medium duty
MV Medium voltage
NMC Nickel-manganese-cobalt
OCV Open circuit voltage
OEM Original equipment manufacturer
PF Power factor
PMV Predicted mean vote
POV Point of view
PPD Predicted percentage dissatisfied
RBS Regenerative braking system
RCD Relative capacity degradation
Rp Polarization resistance
Rs Series resistance
SoC State of charge
Tc Time constant
TCO Total cost of ownership
TMS Thermal management system
UC Use case

Appendix A

The output of the gearbox is given as:

TGB = FT × R (A1)

ωGB = v/R (A2)

Traction mode:
TEM = TGB/(ηGB × KGB) (A3)

Regenerative mode:
TEM = TGB × ηGB/KGB (A4)

ωEM =ωGB × KGB (A5)

where T is the torque (Nm), F is the force (N),ω is the angular speed (rad/s), v is the vehicle
velocity (m/s), R is the wheel radius (m), K is the gearbox ratio, and η is the efficiency.

The output of the electric motor and inverter is given as:

TEM_MAX = LuT (ωEM) (A6)

TEM = |TEM_REQ, if −TEM_MAX ≤ TEM_REQ ≤ TEM_MAX
|TEM_MAX, if TEM_REQ ≥ TEM_MAX

| −TEM_MAX, if TEM_REQ ≤ −TEM_MAX

(A7)

ηEM = LuT (TEM,ωEM) (A8)

PEM = TEM × ωEM (A9)

Traction mode:
PDC_EM = PEM/ηEM (A10)

Regenerative mode:
PDC_EM = PEM × ηEM (A11)
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IDC_EM = PDC_EM/VDC_EM (A12)

where P is the power (W), T is the torque (Nm),ω is the angular velocity (rad/s), I is the
current (A), V is the voltage (V), and η is the efficiency. The TEM_REQ in (A6) is a command
sent by the EMS to control the electric motor so that the E-Bus can properly track the
velocity profile given in the driving scenario.

The output from the high-power DC-DC converter is given as:

ηDC_EM = LuT (VDC_EM, IDC_EM) (A13)

VDC_EM = VDC_EM_REQ (A14)

KDC_EM = VDC_EM/VESS (A15)

Traction mode:
IESS_DC = IDC_EM × KDC_EM/ηDC_EM (A16)

Regenerative mode:

IESS_DC = IDC_EM × KDC_EM × ηDC_EM (A17)

where K is the main DC-DC converter’s voltage step-up factor, P is the power (W), I is
the current (A), V is the voltage (V), and η is the efficiency. The VDC_EM_REQ in (A14) is a
command sent by the EMS to the DC-DC converter to set the appropriate DC link voltage.

The output from the auxiliary DC-DC converter is given as:

ηDC_AUX = LuT (PAUX/PDC_AUX) (A18)

VDC_AUX = VDC_AUX_REQ (A19)

KDC_AUX = VDC_AUX/VESS (A20)

IESS_AUX = IAUX × KDC_AUX/ηDC_AUX (A21)

where K is the auxiliary DC-DC converter’s voltage step-down factor, P is the power (W), I
is the current (A), V is the voltage (V), and η is the efficiency. VDC_AUX_REQ in (A19) is a
command sent by the EMS to control the DC-DC converter to set the appropriate auxiliary
system voltage.

The auxiliary system consists of the heating, ventilation, and air conditioning (HVAC)
system and is mainly used to regulate the cabin and battery temperatures.

PAUX = POH + PHVAC_CAB + PHVAC_ESS (A22)

IAUX = PAUX/VDC_AUX (A23)

where PHVAC is the power drawn by the HVAC, and POH is a minimal overhead power
usage by the onboard electronics, including the lights and the doors, and is assumed to be
constant, V is the voltage (V), and I is the current (A).

The equations of the thermal model block are presented here as functions and are
described further in the ECO-comfort subsection:

[TCAB, PHVAC_CAB] = f (NPASS, TAMB, TSP, RHAMB, SDOOR, SSUN, FECO, CPHP, PFAN, RAIR, GSOL, κBUS) (A24)

[TESS, PHVAC_ESS] = f (PCELL_LOSS, TAMB, TINT, ρCELL, LCELL, HCELL, WCELL, NCELL, CCELL, HTSP, CLSP) (A25)

where N is the number of entities (i.e., passengers, cells, etc.), T is the temperature (◦C), RH
is the humidity (%), S is the state of the item (Boolean or vary between 0 and 1), F is the
flag (Boolean), CP is the coefficient of performance (-), P is the power (W), R is the refresh
rate (L/s), G is the solar irradiance (W/m2), κ is the thermal conductance (W/m-K), ρ is
the density (kg/m3), L, H, and W represent the units of length (m), C is the specific heat
(J/kg-K), and HT and CL represent the heating and cooling setpoints, respectively.
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The overall current that is loaded from the battery can be written as:

IESS_TOT = IESS_EM + IESS_AUX − IESS_CHG (A26)

IESS_MAX_CHG = CRMAX_CHG × CDCELL × NSP (A27)

IESS_MAX_DSC = CRMAX_DSC × CDCELL × NSP (A28)

IESS = |IESS_TOT, if IESS_MAX_CHG ≤ IESS_TOT ≤ IESS_MAX_DSC
|IESS_MAX_CHG, if IESS_TOT ≤ IESS_MAX_CHG
|IEES_MAX_DSC, if IESS_TOT ≥ IESS_MAX_DSC

(A29)

where CR is the charging or discharging rate (-), CD is the cell capacity (Ah), NSP is the
number of parallel strings (-), and I is the current (A).

The output voltage of the battery, VESS, and its SoC will be presented as a function to
make them independent of the battery chemistry. The output voltage, SoC, loss, and RCD
of the ESS are given as:

[PLOSS, SCNEW, VESS, EQNEW] = f (TAMB, IESS, SCCUR, EQCUR, NSC, NSP, CDCELL, VCELL_MIN, VCELL_MAX, LuTRS
(SCCUR, CR, TESS), LuTRP (SCCUR, CR, TESS), LuTTC (SCCUR, CR, TESS))

(A30)

RCD = LuT (EQNEW, CR, TESS) (A31)

where P is the battery pack power loss, SC is the SoC (%), V is the battery pack voltage (V),
EQ is the number of equivalent charge/discharge cycles, T is the temperature (◦C), I is the
current (A), Nsc and Nsp are the number of cells in series and parallel, respectively, CD is
the cell capacity, CR is the charging/discharging rate, given as CR = IESS/(CDCELL * NSP),
RCD is the relative capacity degradation (%), and Rs, Rp, and Tc are the series resistance,
polarization resistance, and time constant, respectively.

The output of the DC charger is given as:

PESS = VESS × IESS_CHG (A32)

ηCHG_DC = LuT (VESS, PESS/PDC_RAT) (A33)

For grid to vehicle:
PLOAD = PESS/ηCHG_DC (A34)

For vehicle to grid:
PLOAD = PESS × ηCHG_DC (A35)

VLOAD = VESS/KCHG_DC (A36)

ILOAD = PLOAD/VLOAD (A37)

ηCHG_TRN = LuT (PLOAD, RFLTR) (A38)

PFCHG_TRN = LuT (PLOAD, RFLTR) (A39)

For grid to vehicle:
PGRD_TRN = PLOAD/ηCHG_TRN (A40)

For vehicle to grid:
PGRD_TRN = PLOAD × ηCHG_TRN (A41)

VAC_RMS = VLOAD × KCHG_TRN (A42)

IGRD_TRN = PGRD_TRN/(VAC_RMS × PFCHG_TRN ×
√

3) (A43)

where K is the charger’s voltage step-up or step-down factor, P is the power (W), I is the
current (A), V is the voltage (V), η is the efficiency, PF is the power factor experienced by
the grid, and R is the resistance (Ω) of the low-pass filter. Since the transformer interacts
simultaneously with multiple chargers, the sum of the power and current are taken.
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The output of the substation transformer is given as:

PGRD_TOT = Σ(PGRD_TRN) (A44)

IGRD_TOT = Σ(IGRD_TRN) ×
√

3 (A45)

PLOAD = IGRD_TOT × VAC_RMS (A46)

PFAVG = PGRD_TOT/PLOAD (A47)

ηTRN = LuT (PLOAD, PFAVG) (A48)

PGRD = PLOAD/ηTRN (A49)

VGRD_RMS = VAC_RMS × KTRN (A50)

IGRD_RMS = PGRD/VGRD_RMS (A51)

where K is the transformer’s voltage step-down factor, PF is the average power factor
experienced by the grid, V is the voltage (V), I is the current (A), and η is the efficiency. The
average PF is taken since each charger will present its unique PF to the transformer, but the
grid will experience the average of all the chargers.
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