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Chapter

Application of Ant Colony
Optimization for Co-Design of
Hybrid Electric Vehicles
Majid Vafaeipour, Dai-Duong Tran,Thomas Geury,

Mohamed El Baghdadi and Omar Hegazy

Abstract

One key subject matter for effective use of Hybrid Electric Vehicles (HEVs) is
searching for drivetrains which their component dimensions and control parameters
are co-optimally designed for a desired performance. This makes the design challenge
as a problem, which needs to be addressed in a holistic way meeting various con-
straints. Along this line, the strong coupling between components sizes of a drivetrain
and parameters of its controllers turns the optimal sizing and control design of HEVs
into a Bi-level optimization problem. In this chapter, an important application of
continuous Ant Colony Optimization (ACOR) for integrated sizing and control design
of HEVs is thoroughly discussed for minimizing the drivetrain cost, minimizing the
fuel consumption and addressing the control objectives at the meantime. The out-
come of this chapter provides useful information related to incorporation of soft-
computing, modeling and simulation concepts into optimization-based design of
HEVs from all respects for designers and automotive engineers. It brings opportuni-
ties to the readers for understanding the criteria, constraints, and objective functions
required for the optimal design of HEVs. Via introducing a two-folded iterative
framework, fuel consumption and component sizing minimizations are of the main
goals to be simultaneously addressed in this chapter using ACOR.

Keywords: Hybrid Electric Vehicles, Continuous Ant Colony Optimization,
Integrated Design, Modeling and Simulation, Parallel HEV, Energy Management
Strategy

1. Introduction

With the advent of hybridization concepts into the automotive field, searching
for drivetrains which their component dimensions and control parameters are
simultaneously designed for optimal objectives has been attained huge attention
from the researchers. The hybrid drivetrains comprise several energy sources and
components such as electric motors, batteries, power electronics converters and
Internal Combustion Engine (ICE). Hence, making concrete design decisions for
their topologies is significantly complicated compared to conventional ones in terms
of sizing. Furthermore, the design space becomes larger considering complexities
caused by indispensable power control parameters and consequently high degrees
of freedom due to presence of multiple power sources [1, 2]. This produces a large
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search space making it sophisticated for achieving objectives which are often
counteracting, but equally important, e.g. satisfactory charge maintenance and fuel
consumption minimization [3–6].

Due to their inevitable interrelations, the design levels of drivetrains cannot be
performed independently or through standalone sequential framework as it leads
one to suboptimal results. This makes the design challenge as a problem, which
needs to be addressed in a holistic way meeting various constraints. Along this line,
the strong coupling between components sizes of a drivetrain and parameters of its
controllers turns the optimal sizing and control design of HEVs into a Bi-level
optimization problem. For obtaining an optimal system design, the drivetrain com-
ponents dimensions and the vehicle energy management strategy (EMS) should be
designed in an interconnected and cohesive manner called integrated optimal
design or co-design leading to minimum drivetrain cost and minimum fuel con-
sumption as main objectives. There are several optimization algorithms and
sequences available for integrated design of HEVs such as stochastic, gradient-
based, deterministic, and derivative-free optimization methods [7]. The algorithm
selection for integrated design of hybrid drivetrains depends on design targets.
However, among variety of existing approaches, the metaheuristic algorithms e.g.
Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Simulated Annealing
(SA) etc., owing to their derivative-free features, could bring great potential and
flexibility toward handling the non-monotonic, non-linear, and highly dynamic
nature of HEV design.

In this chapter, an application of continuous Ant Colony Optimization (ACO) as
a relatively recent nature-inspired algorithm is presented for integrated design of
HEVs focusing on minimization of drivetrain costs besides fuel consumption at the
meantime. The design variables include power rating of the components (i.e. bat-
tery, ICE, electric motors) and control parameters dealing with power sharing
through the components. Various equality and inequality constraints involve in the
optimization procedure related to components power sharing limitations, initial and
final battery state-of-charge (SoC), maximum and minimum allowable SoC bound-
aries, and charging rate limitations. To this end, first there is a need to establish a
full vehicle model and its corresponding energy management strategy (EMS) which
will be performed in Simulink® environment. A modeled passenger vehicle will be
coupled into an ACO algorithm scripted in MATLAB to work in tandem for the
optimization purpose. The developed framework triggers the integrated design
objectives via minimizing sizing and control objective functions while satisfying the
design constraints to be eventually compared with an initial non-optimal case. The
optimization includes two iterative nested parts linked into each other through an
inner loop to consider the optimization objective and constraints for component
sizing and control in an integrated and iterative manner as simplified in Figure 1.

The present chapter is organized as follows. Section 2 presents the drivetrain
architecture of the studied passenger HEV. In Section 3, individual modeling of the
vehicle’s components, EMS and corresponding descriptions will be elaborated.
Section 4 reviews the principles of the used ACO algorithm. Section 5 narrows down

Figure 1.
Coordination of the nested integrated design.
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the objective functions, optimization constraints and the integration of the simula-
tion into optimization process for the studied application. Section 6 discusses and
compares the attained results, and finally Section 7 recapitulates the conclusions.
The outcome of this chapter provides useful information related to incorporation of
soft-computing, modeling and simulation concepts into optimization-based design
of HEVs from all respects for designers and automotive engineers.

2. Drivetrain architecture

In general, the HEVs are a combination of conventional and full-electric vehicles
using both ICE and electric motor/generator for propulsion. Various topology of
HEVs (e.g. series, parallel, series–parallel) exist depending on how the comprising
power sources and components are connected through the vehicle structure. The
parallel architecture for a passenger HEV is considered for the drivetrain topology
of this study. The parallel drivetrain utilizes more than one direct power source in
its architecture to provide energy for the propulsion system. The ICE and electric
motor (EM) in such a topology can be coupled/decoupled to the wheels when
required which brings more degree of freedoms (DoFs) of operating the vehicle in
different modes. Hence, the traction force can be provided by means of both ICE
and EM or either of them independently leading to lower number of energy con-
versions and consequently lower losses in such a topology compared to the series
HEVs [8]. In a parallel drivetrain the wheels can receive the generated power from
the EM plus the one received from ICE. Since the EM can operate as an electric
generator in such a topology, the battery pack can be charged during regenerative
braking or when the ICE output power is greater than the required power at the
wheels. Figure 2 illustrates a schematic of the considered parallel HEV architecture.

3. Modeling of the vehicle subsystems

Three main approaches exist for modeling and simulation of electric vehicles
topologies:

1. the kinematic (backward-facing) approach,

2.the quasi static (forward-facing), and

3.the dynamic approaches.

Figure 2.
Schematic of a parallel HEV topology.
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The backward-facing and forward-facing approaches are also known as “effect-
cause” and “cause-effect”, respectively. Since a backward methodology carries out
significant advantages such as simplicity and low computational cost in model-in--
the-loop applications it is the most ideal testbed for integration into optimization
algorithms requiring iterative operations [9]. Therefore, the backward-facing
method is used for drivetrain modeling and simulation phase of this study. In
principle, the backward facing calculation starts from the driving cycle velocity
inputs to calculate the required tractive force at the wheel for propulsion. The
required power, the translated torque and rotational speed will be calculated in a
backward direction distributed through the components considering the power-
split control block defined in an EMS subsystem. In this regard, Figure 3 illustrates
the calculation direction of a backward-facing model in a simplified way. The
detailed modeling process of the subsystems are provided as follows.

The driving cycles are velocity time series representing a driving pattern; bring
the road to a computer simulation and provide the profile that a vehicle requires to
follow. The use of driving cycles assists modeling the drivetrain and the required
performance to be considered for an appropriate design [8]. The standard New
European Driving Cycle (NEDC), as represented in Figure 4, as the time-
dependent dynamic input of simulation process is used in this chapter.

A vehicle simulation model is required to be linked into the optimization algo-
rithm for optimized integrated design and evaluation of the vehicle performance
over the considered driving cycle. Hence, an energetic vehicle model based on the
longitudinal dynamic motion laws is developed in MATLAB/Simulink® in this
study. The vehicle longitudinal dynamic model uses speed and acceleration
timeseries of a driving cycle to calculate the required tractive forces considering the

Figure 3.
Calculations direction in a generic backward-looking modeling.

Figure 4.
Standard NEDC driving cycle, velocity profile [10].
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drag resistance force, the rolling resistance force, the gradient resistance force, and
the inertia force:

FT ¼ 1

2
ρv2CDAþ Crmg cos aþmg sin aþmCJ

dv

dt
(1)

where its constant values are described and given in Table 1.
Consequently, the torque Tw and the rotational speed ωw required to be supplied

can be modeled. Along this line, by knowing the wheels radius Rw one can readily
have the output of vehicle dynamic model to be fed into transmission subsystem
model:

Tw ¼ FTRw (2)

ωw ¼ v

Rw
(3)

In general, the vehicle components can be modeled using physical equations,
analytical models (i.e. equivalent circuit) or considering related efficiency maps,
which relate torque-speed or voltage–current pairs to their corresponding efficiency
[11]. Using the obtained input torque and rotational speed values, the efficiency
map defined in a look-up-table (LUT), power flow through the Electric Motor (EM)
can mathematically be expressed as:

TG ¼ TwGrη
β (4)

ωG ¼ ωwGr (5)

It is notable that the efficiency term in Eqs. (4) and (5) must be treated con-
trarily for motoring and regenerating braking modes having positive and negative
power flows, respectively. To this end, the efficiency operators β = �1 for the
motoring mode (P > 0), and β = 1 for the braking mode (P < 0) are considered in
the modeling process.

Figure 5 represents the efficiency map of the 75kw EM considered for the
present study stored in EM LUT which can be scaled by torque and consequently
power as an EM sizing decision variable in the optimization procedure.

P ¼ TEMωEMη
β TEM,ωEMð Þ (6)

Description Parameter (unit) Quantity

Mass m (kg) 1350

Drag coefficient CD 0.24

Rolling resistance coefficient Cr 0.009

Rotational inertia coefficient CJ 1.075

Frontal area A (m2) 1.74

Wheel radius Rw (m) 0.287

Air Density ρ (kg/m3) 1.2

Gravitational acceleration g (m/s2) 9.8

Road slope a (degree) 0

Table 1.
Constants of vehicle dynamic calculation.
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Similarly, the core functionality of the ICE subsystem used in this study is based
on an input–output approach using torque-speeds pairs corresponded to the effi-
ciency and fuel rate map stored into LUTs in the vehicle model. Having the output
fuel consumption rates data and the fuel density, the consumed fuel in liter can be
modeled in fuel tank subsystem as given in Eq. (7), where _m represents the fuel
consumption rate and ρ f is the fuel density [13]. Figure 6 represents the efficiency

map of the 41 kW engine considered for the present study which can be scaled by
torque and consequently power as a sizing variable in the optimization procedure.

Fuel ¼
ð

t

0

_m

ρ f

dt (7)

A lithium-ion battery pack based on a semi-empirical first order Thevenin
equivalent circuit is modeled in the battery subsystem. The elements of the battery
model can be identified by using the experimental data [14] for open circuit voltage
(Voc), the internal resistance (Rint), the polarization capacitance (Cp), and the
polarization resistance (Rp), which are stored in the LUTs of the corresponding
subsystem. The terminal voltage of the pack Vbatt and SoC can be expressed as:

Ibatt ¼
Iload
NBatt

(8)

Figure 5.
75 kW EM efficiency map [12].

Figure 6.
41 kW ICE efficiency map [12].
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dVcp

dt
¼ �Vcp

CpRp
þ IBatt

Cp
(9)

VBatt ¼ NBatts Voc � IBattRint � Vcp

� �

(10)

SoC ¼ SoC0 þ
1

3600

ð

IBatt
Cb

dt (11)

Table 2 provides the specification of LiFePO4 (LFP) battery cells used for
modeling while number of cells are considered as the battery power sizing decision
variable in the optimization procedure.

The output of power converters is modeled considering the power flow calcula-
tion direction and the components efficiency are used in their corresponding LUTs.
The operators β =�1, and β = 1 are considered for the motoring mode (while P > 0),
and the braking mode (while P < 0), respectively.

Pout ¼ Pinη
β (12)

The main role of the energy management strategy (EMS) subsystem in HEVs is
to define power sharing control principles satisfying set of required control objec-
tives. The control strategies are mainly categorized into rule-based (RB) and
optimization-based (OB) ones. The RB strategies as they are structurally working
under If-Then rules, may handle trivial control objectives (e.g. HEV battery charge-
sustaining), however, they are highly fragile in leading to optimal results when it
comes to fuel consumption minimization. Hence, there is a need for coupling RB
strategies into OB strategies to form a robust control framework as considered in
the context of the present chapter. To this end, a RB strategy considering different
vehicle operation modes is linked to a Low Pass Filter (LPF) OB strategy in the EMS
block of the modeled vehicle to satisfy control optimization constraints and objec-
tives. The RB control part updates the operating modes through the simulation
considering the requested load, speed, accessible power from energy sources, bat-
tery state-of-charge (SoC) and power split control variables. The operating modes
considering these objectives can be categorized as follows:

• Pure electric mode;

• Hybrid-traction mode;

• Engine traction and battery charging mode;

Parameter (unit) Quantity

Rated capacity (Ah) 14

Nominal voltage (V) 3.6 V

Max discharging current (A) 100 A

SoC0 (%) 80%

Min Voltage (V) 2.5

Max Voltage (V) 4.15

C_rate limit while charging �3

Table 2.
LiFePO4 battery cell parameters.
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• Hybrid battery charging by both ICE and regenerative breaking;

• Regenerative braking mode.

However, the fuel consumption is significantly depended not only on the
defined operating rules, but also on the OB power-split method used, specifically
for the hybrid operating modes for improving efficiency and control robustness.
Hence, an optimized Low Pass Filter (LPF) strategy will be introduced to the
optimization algorithm to optimize the power-split control part by finding the best
sharing control variable of LPF strategy satisfying power sharing objectives and
constraints. In this regard, the considered OB-LPF strategy optimizes power sharing
between the supplying components (i.e. battery and ICE) to provide required
driving power while minimizing fuel consumption. Through using a filter-based
transfer function, the filtered component of the required power passes to be sup-
plied by the ICE while its difference with the total demand will be supplied by the
battery subsystem [15]. The standard transfer function defined in the energy man-
agement subsystem and optimization process is considered as below. Here the LPF
denominator (τ) is the control variable to be searched through optimization routine
toward having the control objectives and constraints satisfied:

f LPF ¼ 1

τ:sþ 1
(13)

The elaborated subsystems are integrated in the Simulink® environment to
form the whole vehicle model to work in tandem with a MATLAB-based ANT
Colony (ACOR) algorithm for component sizing and control optimization.

4. ACOR algorithm

The metaheuristic Ant Colony Optimization (ACO) system, inspired by foraging
behavior of ants, was first developed by Dorigo et al. [16] for discrete optimization
problems. In the discrete ACO the ants represent stochastic procedures toward
establishing set of candidate solutions in presence of a pheromone model. The pher-
omone model encompasses numerical values as pheromones being updated in itera-
tions leading ants to promising solution regions of the search space. Hence, in the
discrete ACO, pheromone information is used in a sampling process to construct a
discrete probability function based on the sorted solutions. Later on for solving
continuous domains, Socha and Dorigo [17] developed the continuous ACO (ACOR)
which can utilize continuous multimodal probability functions such as weighted
Gaussian functions over the search space to solve a non-linear function optimization
problem as Min f xð Þ : a≤ x≤ b where vector x ¼ x1, … , xnð Þ represents the decision
variables having vectors a and b as the lower and upper search space boundaries,
respectively [18]. To this end, it produces a probability density function for each
iteration using solution archives as an explicit memory of the search history in the
pheromone model. Accordingly, the ACOR used in this study includes three main
phases as:

• Pheromone representation;

• Probabilistic solution construction;

• Pheromone update.
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In this regard, first in pheromone representation stage the algorithm uniformly
and in a random manner initializes the solution archive of k solutions where each
solution is a D-dimensional vector for xi ∈ xmin, xmax½ �where i ¼ 1, 2, … ,D: The
archived solutions are sorted based on their quality (best to worth). In the probabi-
listic construction stage a solution (i.e. S j) for jthsolution will be selected consider-
ing the choosing probability p j defined by a Gaussian probability function where

each solution S jis corresponded to its weight w j, mathematically expressed as
follows [19, 20]:

w j ¼
1

qk
ffiffiffiffiffi

2π
p exp

� rank jð Þ � 1ð Þ2

2q2k2

 !

(14)

p j ¼
w j

Pk
a¼1wa

(15)

In this regard, the better solutions would get higher choosing chances. Corre-
spondingly, rank jð Þ is the rank of sorted solutionS j, and the intensification factor
(selection pressure factor),q, is a modifiable algorithm parameter dealing with uni-
formity of the probability function while larger q values make the probability func-
tion more uniform. A solution would be chosen based on the probabilistic approach
and new candidate solutions are generated as the algorithm samples neighborhood of

ith decision variable, Siguide, using the Gaussian function G (see Figure 7) with mean

μiguide ¼ Siguideand standard deviation σiguide values as follows [21]:

σiguide ¼ ξ
X

k

r¼1

Sir � Siguide

�

�

�

�

�

�

k� 1
(16)

It calculates the average distance value of the ithcomponent of Sguide and the

values of the ithcomponents of solutions in the archive. Here the multiplier ξ>0 is

Figure 7.
The solution archive and the Gaussian functions used in ACOR [21].
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the user-specified pheromone evaporation rate parameter affecting the conver-
gence while lower ξ values lead to lower convergence speed.

In the phoremone update phase, the process repeates forNa(number of ants)
times while appending the new generated solutions to the k solutions of the archive,
to incrementally sort kþNa solutions and remove the worst solutions. Therefore,
before a next iteration starts, the algorithm updates the archive keeping only the
best k solution and discarding the worst ones having the archive size unchanged.
For a considered number of itterations, the algorithm runs till reaching a stoping

Figure 8.
General flowchart of the algorithm for the inner loops of the nested framework [22].
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criteria to eventually select the best solution among the the evaluated positions.
Figure 8 provides the algorithm flowchart for the elaborated procedures.

5. Incorporation of the vehicle model into the optimization procedure,
objectives and constraints

The established Simulink® model previously explained in this chapter is inte-
grated to the MATLAB-based ACO script to iteratively work in tandem for the
optimization purpose. The framework considers set of defined control and compo-
nent sizing constraints and objectives. The co-design optimization process includes
two iterative phases linked into each other through an outer loop to consider finding
optimized EMS and component sizes at the meantime as simplified in Figure 9.

Two objective functions corresponding to the fuel consumption and components
cost are considered for control and sizing optimizations, respectively. For the con-
trol parameter optimization, the decision variable would be the previously intro-
duced LPF denominator (τ). Therefore, for the EMS optimization the algorithm
aims to search for the power sharing variable which minimizes the fuel consump-
tion (FC) while satisfying the constraints.

min FCð Þ ¼ min J1 ¼ min

ð

t

0

_mdt (17)

On the other hand, another objective function is used for the component sizing
formed based on the cost of powertrain components considering their prices per

Figure 9.
Coordination architecture of the co-design and variables interrelations.
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power unit. In other words, for the optimal sizing, the algorithm searches for the
sizes which minimize the powertrain cost while satisfying the constraints. In this
regard, the following formulation can be readily expressed for this objective
function:

min Costpowertrain
� �

¼ min J ¼ argmin
sizes

€CICE þ €CEM þ €Cinv þ €CBatt þ €Cconvð Þ

(18)

where the cost, €, for each component is considered in Euros and can be calcu-
lated based on per-power unit price, Qcomp, of each component considering its size:

€Ccomp ¼ Q comp

� �

sizecomp

� �

(19)

The used per power unit price are given in Table 3 for the ICE, the battery and
the DC-DC converter while the inverter cost can be directly included based on the
following equation.

€Cinv ¼ 13:26 Pð Þ1:1718 (20)

For minimization of the objective functions, the charge sustaining HEV is
subjected to the following inequality constrains:

∣SoC f � SoCi∣< ε0 (21)

SoCmin � ε< SoC tð Þ< SoCmax þ ε (22)

C_Rate tð Þ≥ � 3;Negative sign stands for charging (23)

where the sizes of components are bounded between the considered minimum
and maximum values of the search space. Regarding the SoC, constraint in Eq. (21)
indicates the charge sustaining requirement, and Eq. (22) stands for the allowable
limits of the SoC over the total driving cycle. The constraint in Eq. (23) is consid-
ered based on LiFePO4 battery type chemistry to avoid sudden charges, to avoid
fast aging of the battery pack, and to improve battery’s lifetime and performance. It
is notable that some constraints must be incorporated into the objective function as
penalties to penalize the cost via adding (in minimization problems) or deducting
(in maximization problems) a big enough penalty value when the constraint(s) is
violated. This technique is useful to consider the inequality constraints which
cannot be directly involved in the formulations of the objective function. As the
optimization problem for both objectives are both minimization type here, the
added penalty is considered.

Component Q Unit

QICE 80 €/kW

QBatt 200 €/kWh

QDC-DC 100 €/kW

QEM 90 €/kW

Table 3.
Per-power unit prices used in cost objective function.
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6. Results and discussion

To investigate the effectiveness of the proposed framework, simulation and
optimization over NEDC driving cycle are performed and the results are provided
in this section. The comparisons are considered for an initial non-optimized case
(before integrated design) versus optimized cases (after integrated design). The
main objective of the integrated design is to minimize component sizes and as a
result the cost of powertrain besides achieving optimized fuel consumption while
satisfying the constraints through the developed nested iterative framework. For
achieving close enough values of the initial and final SoC, ε0 ¼ 0:3%, and for
providing slight degree of freedom on allowable SoCmin and SoCmax, small ε allow-
able sliding value as 4%, were all considered in the formulations of the optimization
constraints. Figure 10 presents the power sharing between the battery and the ICE
satisfying driving power. In addition, evolution of the battery SoC and C-Rate for
the studied driving cycle after the integrated design are plotted in the same figure.
As can be seen, the regulated EMS could successfully recover the SoC to achieve
close values for initial and final SoC over the full cycle (SoC f ≃ SoC f)having the ICE

charging the battery when needed while considering the definedC_Rate tð Þ violation
limit at the meantime. In addition, the SoC allowable minimum and maximum
boundary is satisfied through the desired window range for the whole cycle. Con-
sequently, Table 4 provides detailed evaluations in terms of control constraints
satisfaction related to triggered EMS goals.

Correspondingly, Table 5 summarizes the design parameters before and after
optimal integrated design while fuel consumption besides powertrain cost

Figure 10.
Power distribution (kW), SoC (%) recovery, and C-rate results.

Considered features Before After

∣SoC f � SoCi∣<0:3 ✘ ✓

SoCmin � ε< SoC tð Þ< SoCmax þ ε ✘ ✓

Driving power needs ✓ ✓

C_Rate tð Þ< � 3 ✓ ✓

All EMS objectives satisfied? ✘ ✓

Table 4.
Control goals satisfaction.
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improvements for the studied cases are provided in Table 6. The sizes of the
decision variable values attained after integrated design indicates that the algorithm
could efficiently downsize the component sizes and consequently the powertrain
costs. It can be observed that improvements are achieved in the fuel consumption
and cost of powertrain components after the co-design design by 5% and 17%,
respectively as illustrated in Figure 11.

7. Chapter conclusions

This chapter investigated a combination of optimization-based and rule-based
energy management strategies to perform an integrated design approach for a
passenger hybrid electric vehicle use-case. The modeling procedure of the compo-
nents were presented, and the corresponding Simulink® model was developed and
linked to an ACOR algorithm to work iteratively for the co-design design purpose.
To check the performance of the proposed framework, simulations and optimiza-
tions were carried out over the NEDC driving cycle. The detailed results through

Design

variable

Description Lower

bound

Upper

bound

Initial

value

Optimal design

value

PICE (kW) ICE size 30 120 84 75

CapBatt
(kWh)

Battery pack size 3 20 9 7

EM (kW) Electric motor

size

50 120 97 80

Table 5.
Component sizes before and after integrated design.

Objectives Before integrated design After integrated design

Fuel Consumption (L/100 km) 5.1 4.8

Improvement (%) — 5

Powertrain Cost (Euros) 28100 23200

Improvement (%) — 17

Table 6.
Fuel consumption and powertrain cost improvements.

Figure 11.
Fuel consumption and powertrain cost comparisons.
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the cycle for power splitting, battery SoC values, battery Crate values, fuel con-
sumption and powertrain costs were obtained and compared for before and after
applying the approach. The results indicated that the proposed framework not only
was able to provide an acceptable management regarding the battery SoC and Crate,
but also was competent of bringing significant added values in terms of the fuel
consumption and powertrain cost reduction. The outcome of the present study
paves the path for experimental Hardware-in-the-Loop and Vehicle-in-the-Loop
validations.
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