11 research outputs found

    Further analysis of previously implicated linkage regions for Alzheimer's disease in affected relative pairs

    Get PDF
    Background Genome-wide linkage studies for Alzheimer's disease have implicated several chromosomal regions as potential loci for susceptibility genes. Methods In the present study, we have combined a selection of affected relative pairs (ARPs) from the UK and the USA included in a previous linkage study by Myers et al. (Am J Med Genet, 2002), with ARPs from Sweden and Washington University. In this total sample collection of 397 ARPs, we have analyzed linkage to chromosomes 1, 9, 10, 12, 19 and 21, implicated in the previous scan. Results The analysis revealed that linkage to chromosome 19q13 close to the APOE locus increased considerably as compared to the earlier scan. However, linkage to chromosome 10q21, which provided the strongest linkage in the previous scan could not be detected. Conclusion The present investigation provides yet further evidence that 19q13 is the only chromosomal region consistently linked to Alzheimer's disease

    Loss of chaperone protein in human cancer

    No full text
    TRAP1 is a Heat Shock Protein (HSP) chaperone to retinoblastoma but also associated to the tumor necrosis factor receptor. HSPs are primarily up regulated in cancer. Work in our lab noted a down regulation of TRAP1 in some non-small cell lung cancers compared to normal lung. The first aim of this project was to evaluate the effect of the loss of TRAP1 on cell proliferation using a spheroid model. The presence of TRAP1 in spheroids promoted cell proliferation and a faster onset of hypoxia. This suggests an oncogenic role for TRAP1 since rapid hypoxia development equates to poor prognosis. Micro array analysis showed that TRAP1’s loss was associated with increased transcrpition of the Junctional Mediating and Regulatory protein (JMY). JMY possesses an oncogenic property due to its ability to facilitate cell motility. Additionally it has tumor suppressor activity in promoting p53 activation. The second aim of this project was to produce an anti-JMY antibody and use it to characterize JMY and additionally verify the association between TRAP1 and JMY. JMY was found to be widely expressed in normal tissues and in many types of tumors. In neoplastic tissues, comparing primary versus metastatic tumors, JMY was found to have significantly higher expression in the metastatic compared with the primary tumors. A pilot study showed that nuclear co-expression of JMY and P53 was associated with shorter overall survival suggesting that a possible tumorigenesis mechanism could be via a deregulation/mutation of JMY/p53 or both. Finally, using 3 dimensional constructions, I demonstrated the distinct morphological difference between an angiogenic tumor and a non-angiogenic tumor. Additionally, I showed a characteristic cytoplasmic p53 sequestration in the non-angiogenic phenotype that is absent in the angiogenic phenotype. This could be the mechanism that the non-angiogenic tumor uses to adapt to hypoxia. This would imply that there is a potential for cancers to escape therapy by switching between these 2 phenotypes

    Loss of chaperone protein in human cancer

    No full text
    TRAP1 is a Heat Shock Protein (HSP) chaperone to retinoblastoma but also associated to the tumor necrosis factor receptor. HSPs are primarily up regulated in cancer. Work in our lab noted a down regulation of TRAP1 in some non-small cell lung cancers compared to normal lung. The first aim of this project was to evaluate the effect of the loss of TRAP1 on cell proliferation using a spheroid model. The presence of TRAP1 in spheroids promoted cell proliferation and a faster onset of hypoxia. This suggests an oncogenic role for TRAP1 since rapid hypoxia development equates to poor prognosis. Micro array analysis showed that TRAP1’s loss was associated with increased transcrpition of the Junctional Mediating and Regulatory protein (JMY). JMY possesses an oncogenic property due to its ability to facilitate cell motility. Additionally it has tumor suppressor activity in promoting p53 activation. The second aim of this project was to produce an anti-JMY antibody and use it to characterize JMY and additionally verify the association between TRAP1 and JMY. JMY was found to be widely expressed in normal tissues and in many types of tumors. In neoplastic tissues, comparing primary versus metastatic tumors, JMY was found to have significantly higher expression in the metastatic compared with the primary tumors. A pilot study showed that nuclear co-expression of JMY and P53 was associated with shorter overall survival suggesting that a possible tumorigenesis mechanism could be via a deregulation/mutation of JMY/p53 or both. Finally, using 3 dimensional constructions, I demonstrated the distinct morphological difference between an angiogenic tumor and a non-angiogenic tumor. Additionally, I showed a characteristic cytoplasmic p53 sequestration in the non-angiogenic phenotype that is absent in the angiogenic phenotype. This could be the mechanism that the non-angiogenic tumor uses to adapt to hypoxia. This would imply that there is a potential for cancers to escape therapy by switching between these 2 phenotypes.</p

    The Role of JMY in p53 Regulation

    No full text
    Following the event of DNA damage, the level of tumour suppressor protein p53 increases inducing either cell cycle arrest or apoptosis. Junctional Mediating and Regulating Y protein (JMY) is a transcription co-factor involved in p53 regulation. In event of DNA damage, JMY levels also upregulate in the nucleus where JMY forms a co-activator complex with p300/CREB-binding protein (p300/CBP), Apoptosis-stimulating protein of p53 (ASPP) and Stress responsive activator of p53 (Strap). This co-activator complex then binds to and increases the ability of p53 to induce transcription of proteins triggering apoptosis but not cell cycle arrest. This then suggests that the increase of JMY levels due to DNA damage putatively &ldquo;directs&rdquo; p53 activity toward triggering apoptosis. JMY expression is also linked to increased cell motility as it: (1) downregulates the expression of adhesion molecules of the Cadherin family and (2) induces actin nucleation, making cells less adhesive and more mobile, favouring metastasis. All these characteristics taken together imply that JMY possesses both tumour suppressive and tumour metastasis promoting capabilities

    Loss of chaperone protein in human cancer

    No full text
    TRAP1 is a Heat Shock Protein (HSP) chaperone to retinoblastoma but also associated to the tumor necrosis factor receptor. HSPs are primarily up regulated in cancer. Work in our lab noted a down regulation of TRAP1 in some non-small cell lung cancers compared to normal lung. The first aim of this project was to evaluate the effect of the loss of TRAP1 on cell proliferation using a spheroid model. The presence of TRAP1 in spheroids promoted cell proliferation and a faster onset of hypoxia. This suggests an oncogenic role for TRAP1 since rapid hypoxia development equates to poor prognosis. Micro array analysis showed that TRAP1’s loss was associated with increased transcrpition of the Junctional Mediating and Regulatory protein (JMY). JMY possesses an oncogenic property due to its ability to facilitate cell motility. Additionally it has tumor suppressor activity in promoting p53 activation. The second aim of this project was to produce an anti-JMY antibody and use it to characterize JMY and additionally verify the association between TRAP1 and JMY. JMY was found to be widely expressed in normal tissues and in many types of tumors. In neoplastic tissues, comparing primary versus metastatic tumors, JMY was found to have significantly higher expression in the metastatic compared with the primary tumors. A pilot study showed that nuclear co-expression of JMY and P53 was associated with shorter overall survival suggesting that a possible tumorigenesis mechanism could be via a deregulation/mutation of JMY/p53 or both. Finally, using 3 dimensional constructions, I demonstrated the distinct morphological difference between an angiogenic tumor and a non-angiogenic tumor. Additionally, I showed a characteristic cytoplasmic p53 sequestration in the non-angiogenic phenotype that is absent in the angiogenic phenotype. This could be the mechanism that the non-angiogenic tumor uses to adapt to hypoxia. This would imply that there is a potential for cancers to escape therapy by switching between these 2 phenotypes.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Vessel co-option in primary human tumors and metastases: an obstacle to effective anti-angiogenic treatment?

    Get PDF
    Angiogenesis has been regarded as essential for tumor growth and progression. Studies of many human tumors, however, suggest that their microcirculation may be provided by nonsprouting vessels and that a variety of tumors can grow and metastasize without angiogenesis. Vessel co-option, where tumor cells migrate along the preexisting vessels of the host organ, is regarded as an alternative tumor blood supply. Vessel co-option may occur in many malignancies, but so far mostly reported in highly vascularized tissues such as brain, lung, and liver. In primary and metastatic lung cancer and liver metastasis from different primary origins, as much as 10–30% of the tumors are reported to use this alternative blood supply. In addition, vessel co-option is introduced as a potential explanation of antiangiogenic drug resistance, although the impact of vessel co-option in this clinical setting is still to be further explored. In this review we discuss tumor vessel co-option with specific examples of vessel cooption in primary and secondary tumors and a consideration of the clinical implications of this alternative tumor blood supply

    ABCA1 polymorphisms and Alzheimer´s disease

    No full text
    Final full-text version of the paper available at: http://ees.elsevier.com/nsl/. Copyright © by Elsevier.In our search for genetic factors related to the development of Alzheimer’s disease, we have genotyped 332 pedigrees for 3 coding polymorphisms in the ABCA1 gene, two of which are known to alter plasma cholesterol levels, as well as a non-coding polymorphism within the promoter. We show an apparent weak association of rs2230806 (p-value= 0.01) with the disease in a sibpair series of Alzheimer’s disease that had shown previously evidence for linkage to the chromosome 9 locus where ABCA1 maps.This work was supported by the NIA/NIH intramural research program. Many data and biomaterials were collected by the NCRAD (grant number U24 AG21886), as well as the National Institute of Mental Health (NIMH) Alzheimer’s Disease Genetics Initiative (grants numbers U01 MH46281, U01 MH46290, U01 MH46373).Peer reviewe

    Webs of crime: Corruption in the perspective of social network analysis

    No full text
    In this thesis, I attempt to apply the network perspective to the study of corruption. First, I deal with current state of theory and research on corruption, which I find to be ignoring relations and interactions among offenders themselves. Then I review literature in the field of covert and criminal networks. The theoretical part of this thesis ends with brief descriptions of two major cases of political corruption in the Czech Republic - so called Nagy case and Rath case. In the methodological part, I introduce basic concepts of social network analysis as well as methods for positional analysis, especially the blockmodelling. In my research, I deal with exploratory analysis of both the aforementioned networks. Using proxy data, I analyse cohesion, centralization, centrality measures and cliques in these networks. Then I use conventional blockmodeling to search for roles and positions within these networks. My results suggest that both networks are dense and centralized with overlapping cliques contrary to other covert networks possibly accounting for their eventual disruption and failure. Positional analysis using varius methods such as CONCOR or different types of cluster analysis reveals a structure resembling the core-periphery model, which is supported by measuring coreness and finding a good..

    Does APOE explain the linkage of Alzheimer's disease to chromosome 19q13?

    No full text
    We have studied the impact of the apolipoprotein E gene (APOE) on the chromosome 19 linkage peak from an analysis of sib-pairs affected by Alzheimer’s disease. We genotyped 417 affected sib-pairs (ASPs) collected in Sweden and Norway (SWE), the UK and the USA for 10 microsatellite markers on chromosome 19. The highest Zlr (3.28, chromosome-wide P-value 0.036) from the multipoint linkage analysis was located approximately 1 Mb from APOE, at marker D19S178. The linkage to chromosome 19 was well explained by APOE in the whole sample as well as in the UK and USA subsamples, as identity by descent (IBD) increased with the number of ε4 alleles in ASPs. There was a suggestion from the SWE subsample that linkage was higher than would be expected from APOE alone, although the test for this did not reach formal statistical significance. There was also a significant age at onset (aao) effect on linkage to chromosome 19q13 in the whole sample, which manifested itself as increased IBD sharing in relative pairs with lower mean aao. This effect was partially, although not completely, explained by APOE. The aao effect varied considerably between the different subsamples, with most of the effect coming from the UK sample. The other samples showed smaller effects in the same direction, but these were not significant
    corecore