50 research outputs found

    Francisella tularensis in the United States

    Get PDF
    Subpopulations A.I and A.II. of Francisella tularensis subsp. tularensis are associated with unique biotic and abiotic factors that maintain disease foci

    Laboratory Analysis of Tularemia in Wild-Trapped, Commercially Traded Prairie Dogs, Texas, 2002

    Get PDF
    Oropharyngeal tularemia was identified as the cause of a die-off in captured wild prairie dogs at a commercial exotic animal facility in Texas. From this point source, Francisella tularensis–infected prairie dogs were traced to animals distributed to the Czech Republic and to a Texas pet shop. F. tularensis culture isolates were recovered tissue specimens from 63 prairie dogs, including one each from the secondary distribution sites. Molecular and biochemical subtyping indicated that all isolates were F. tularensis subsp. holarctica (Type B). Microagglutination assays detected antibodies against F. tularensis, with titers as great as 1:4,096 in some live animals. All seropositive animals remained culture positive, suggesting that prairie dogs may act as chronic carriers of F. tularensis. These findings demonstrate the need for additional studies of tularemia in prairie dogs, given the seriousness of the resulting disease, the fact that prairie dogs are sold commercially as pets, and the risk for pet-to-human transmission

    Temporal differences of onset between primary skin lesions and regional lymph node lesions for tularemia in Japan: a clinicopathologic and immunohistochemical study of 19 skin cases and 54 lymph node cases

    Get PDF
    For tularemia, a zoonosis caused by the gram-negative coccobacillus Francisella tularensis, research of the relation between skin lesions and lymph node lesions has not been reported in the literature. This report describes skin lesions and lymph node lesions and their mutual relation over time for tularemia in Japan. Around the second day after infection (DAI), a subcutaneous abscess was observed (abscess form). Hand and finger skin ulcers formed during the second to the fourth week. Subcutaneous and dermal granulomas were observed with adjacent monocytoid B lymphocytes (MBLs) (abscess–granulomatous form). From the sixth week, large granulomas with central homogeneous lesions emerged diffusely (granulomatous form). On 2–14 DAI, F. tularensis antigen in skin lesions was detected in abscesses. During 7–12 DAI, abscesses with adjacent MBLs appeared without epithelioid granuloma (abscess form) in regional lymph nodes. During the second to fifth week, granulomas appeared with necrosis (abscess–granulomatous form). After the sixth week, large granulomas with a central homogeneous lesion (granulomatous form) appeared. F. tularensis antigen in lymph node lesions was observed in the abscess on 7–92 DAI. Apparently, F. tularensis penetrates the finger skin immediately after contact with infected hares. Subsequently, the primary lesion gradually transfers from skin to regional lymph nodes. The regional lymph node lesions induced by skin lesion are designated as dermatopathic lymphadenopathy. This study revealed temporal differences of onset among the skin and lymph node lesions

    Host-Pathogen O-Methyltransferase Similarity and Its Specific Presence in Highly Virulent Strains of Francisella tularensis Suggests Molecular Mimicry

    Get PDF
    Whole genome comparative studies of many bacterial pathogens have shown an overall high similarity of gene content (>95%) between phylogenetically distinct subspecies. In highly clonal species that share the bulk of their genomes subtle changes in gene content and small-scale polymorphisms, especially those that may alter gene expression and protein-protein interactions, are more likely to have a significant effect on the pathogen's biology. In order to better understand molecular attributes that may mediate the adaptation of virulence in infectious bacteria, a comparative study was done to further analyze the evolution of a gene encoding an o-methyltransferase that was previously identified as a candidate virulence factor due to its conservation specifically in highly pathogenic Francisella tularensis subsp. tularensis strains. The o-methyltransferase gene is located in the genomic neighborhood of a known pathogenicity island and predicted site of rearrangement. Distinct o-methyltransferase subtypes are present in different Francisella tularensis subspecies. Related protein families were identified in several host species as well as species of pathogenic bacteria that are otherwise very distant phylogenetically from Francisella, including species of Mycobacterium. A conserved sequence motif profile is present in the mammalian host and pathogen protein sequences, and sites of non-synonymous variation conserved in Francisella subspecies specific o-methyltransferases map proximally to the predicted active site of the orthologous human protein structure. Altogether, evidence suggests a role of the F. t. subsp. tularensis protein in a mechanism of molecular mimicry, similar perhaps to Legionella and Coxiella. These findings therefore provide insights into the evolution of niche-restriction and virulence in Francisella, and have broader implications regarding the molecular mechanisms that mediate host-pathogen relationships

    Generation of a Convalescent Model of Virulent Francisella tularensis Infection for Assessment of Host Requirements for Survival of Tularemia

    Get PDF
    Francisella tularensis is a facultative intracellular bacterium and the causative agent of tularemia. Development of novel vaccines and therapeutics for tularemia has been hampered by the lack of understanding of which immune components are required to survive infection. Defining these requirements for protection against virulent F. tularensis, such as strain SchuS4, has been difficult since experimentally infected animals typically die within 5 days after exposure to as few as 10 bacteria. Such a short mean time to death typically precludes development, and therefore assessment, of immune responses directed against virulent F. tularensis. To enable identification of the components of the immune system that are required for survival of virulent F. tularensis, we developed a convalescent model of tularemia in C57Bl/6 mice using low dose antibiotic therapy in which the host immune response is ultimately responsible for clearance of the bacterium. Using this model we demonstrate αβTCR+ cells, γδTCR+ cells, and B cells are necessary to survive primary SchuS4 infection. Analysis of mice deficient in specific soluble mediators shows that IL-12p40 and IL-12p35 are essential for survival of SchuS4 infection. We also show that IFN-γ is required for survival of SchuS4 infection since mice lacking IFN-γR succumb to disease during the course of antibiotic therapy. Finally, we found that both CD4+ and CD8+ cells are the primary producers of IFN-γand that γδTCR+ cells and NK cells make a minimal contribution toward production of this cytokine throughout infection. Together these data provide a novel model that identifies key cells and cytokines required for survival or exacerbation of infection with virulent F. tularensis and provides evidence that this model will be a useful tool for better understanding the dynamics of tularemia infection

    Catalogue des tabanidae (diptera) paléarctiques

    Full text link
    peer reviewe

    Nouveau catalogue des tabanidae paléarctiques (diptea)

    Full text link
    peer reviewe

    Characterization of the O antigen gene cluster and structural analysis of the O antigen of Francisella tularensis subsp. tularensis.

    No full text
    A gene cluster encoding enzymes involved in LPS O antigen biosynthesis was identified from the partial genome sequence of Francisella tularensis subsp. tularensis Schu S4. All of the genes within the cluster were assigned putative functions based on sequence similarity with genes from O antigen biosynthetic clusters from other bacteria. Ten pairs of overlapping primers were designed to amplify the O antigen biosynthetic cluster by PCR from nine strains of F. tularensis. Although the gene cluster was present in all strains, there was a size difference in one of the PCR products between subsp. tularensis strains and subsp. holarctica strains. LPS was purified from F. tularensis subsp. tularensis Schu S4 and the O antigen was shown by mass spectrometry to have a structure similar to that of F. tularensis subsp. holarctica strain 15. When LPS from F. tularensis subsp. tularensis Schu S4 was used to immunize mice that were then challenged with F. tularensis subsp. tularensis Schu S4, an extended time to death was observed
    corecore