79 research outputs found

    Role of Human Corneal Stroma-Derived Mesenchymal-Like Stem Cells in Corneal Immunity and Wound Healing

    Get PDF
    Corneal tissue regeneration is of crucial importance for maintaining normal vision. We aimed to isolate and cultivate human corneal stroma-derived mesenchymal stem-like cells (CSMSCs) from the central part of cadaver corneas and study their phenotype, multipotency, role in immunity and wound healing. The isolated cells grew as monolayers in vitro, expressed mesenchymal- and stemness-related surface markers (CD73, CD90, CD105, CD140b), and were negative for hematopoietic markers as determined by flow cytometry. CSMSCs were able to differentiate in vitro into fat, bone and cartilage. Their gene expression profile was closer to bone marrow-derived MSCs (BMMSCs) than to limbal epithelial stem cells (LESC) as determined by high-throughput screening. The immunosuppressive properties of CSMSCs were confirmed by a mixed lymphocyte reaction (MLR), while they could inhibit proliferation of activated immune cells. Treatment of CSMSCs by pro-inflammatory cytokines and toll-like receptor ligands significantly increased the secreted interleukin-6 (IL-6), interleukin-8 (IL-8) and C-X-C motif chemokine 10 (CXCL-10) levels, as well as the cell surface adhesion molecules. CSMSCs were capable of closing a wound in vitro under different stimuli. These cells thus contribute to corneal tissue homeostasis and play an immunomodulatory and regenerative role with possible implications in future cell therapies for treating sight-threatening corneal diseases

    In silico discovery of blood cell macromolecular associations

    Get PDF
    Background Physical molecular interactions are the basis of intracellular signalling and gene regulatory networks, and comprehensive, accessible databases are needed for their discovery. Highly correlated transcripts may reflect important functional associations, but identification of such associations from primary data are cumbersome. We have constructed and adapted a user-friendly web application to discover and identify putative macromolecular associations in human peripheral blood based on significant correlations at the transcriptional level. Methods The blood transcriptome was characterized by quantification of 17,328 RNA species, including 341 mature microRNAs in 105 clinically well-characterized postmenopausal women. Intercorrelation of detected transcripts signal levels generated a matrix with > 150 million correlations recognizing the human blood RNA interactome. The correlations with calculated adjusted p-values were made easily accessible by a novel web application. Results We found that significant transcript correlations within the giant matrix reflect experimentally documented interactions involving select ubiquitous blood relevant transcription factors (CREB1, GATA1, and the glucocorticoid receptor (GR, NR3C1)). Their responsive genes recapitulated up to 91% of these as significant correlations, and were replicated in an independent cohort of 1204 individual blood samples from the Framingham Heart Study. Furthermore, experimentally documented mRNAs/miRNA associations were also reproduced in the matrix, and their predicted functional co-expression described. The blood transcript web application is available at http://app.uio.no/med/klinmed/correlation-browser/blood/index.php and works on all commonly used internet browsers. Conclusions Using in silico analyses and a novel web application, we found that correlated blood transcripts across 105 postmenopausal women reflected experimentally proven molecular associations. Furthermore, the associations were reproduced in a much larger and more heterogeneous cohort and should therefore be generally representative. The web application lends itself to be a useful hypothesis generating tool for identification of regulatory mechanisms in complex biological data sets.publishedVersio

    POLD2 and KSP37 (FGFBP2) Correlate Strongly with Histology, Stage and Outcome in Ovarian Carcinomas

    Get PDF
    BACKGROUND:Epithelial ovarian cancer (EOC) constitutes more than 90% of ovarian cancers and is associated with high mortality. EOC comprises a heterogeneous group of tumours, and the causes and molecular pathology are essentially unknown. Improved insight into the molecular characteristics of the different subgroups of EOC is urgently needed, and should eventually lead to earlier diagnosis as well as more individualized and effective treatments. Previously, we reported a limited number of mRNAs strongly upregulated in human osteosarcomas and other malignancies, and six were selected to be tested for a possible association with three subgroups of ovarian carcinomas and clinical parameters. METHODOLOGY/PRINCIPAL FINDINGS:The six selected mRNAs were quantified by RT-qPCR in biopsies from eleven poorly differentiated serous carcinomas (PDSC, stage III-IV), twelve moderately differentiated serous carcinomas (MDSC, stage III-IV) and eight clear cell carcinomas (CCC, stage I-IV) of the ovary. Superficial scrapings from six normal ovaries (SNO), as well as biopsies from three normal ovaries (BNO) and three benign ovarian cysts (BBOC) were analyzed for comparison. The gene expression level was related to the histological and clinical parameters of human ovarian carcinoma samples. One of the mRNAs, DNA polymerase delta 2 small subunit (POLD2), was increased in average 2.5- to almost 20-fold in MDSC and PDSC, respectively, paralleling the degree of dedifferentiation and concordant with a poor prognosis. Except for POLD2, the serous carcinomas showed a similar transcription profile, being clearly different from CCC. Another mRNA, Killer-specific secretory protein of 37 kDa (KSP37) showed six- to eight-fold higher levels in CCC stage I compared with the more advanced staged carcinomas, and correlated positively with an improved clinical outcome. CONCLUSIONS/SIGNIFICANCE:We have identified two biomarkers which are markedly upregulated in two subgroups of ovarian carcinomas and are also associated with stage and outcome. The results suggest that POLD2 and KSP37 might be potential prognostic biomarkers

    Distinct microRNA and protein profiles of extracellular vesicles secreted from myotubes from morbidly obese donors with type 2 diabetes in response to electrical pulse stimulation

    Get PDF
    Lifestyle disorders like obesity, type 2 diabetes (T2D), and cardiovascular diseases can be prevented and treated by regular physical activity. During exercise, skeletal muscles release signaling factors that communicate with other organs and mediate beneficial effects of exercise. These factors include myokines, metabolites, and extracellular vesicles (EVs). In the present study, we have examined how electrical pulse stimulation (EPS) of myotubes, a model of exercise, affects the cargo of released EVs. Chronic low frequency EPS was applied for 24 h to human myotubes isolated and differentiated from biopsy samples from six morbidly obese females with T2D, and EVs, both exosomes and microvesicles (MV), were isolated from cell media 24 h thereafter. Size and concentration of EV subtypes were characterized by nanoparticle tracking analysis, surface markers were examined by flow cytometry and Western blotting, and morphology was confirmed by transmission electron microscopy. Protein content was assessed by high-resolution proteomic analysis (LC-MS/MS), non-coding RNA was quantified by Affymetrix microarray, and selected microRNAs (miRs) validated by real time RT-qPCR. The size and concentration of exosomes and MV were unaffected by EPS. Of the 400 miRs identified in the EVs, EPS significantly changed the level of 15 exosome miRs, of which miR-1233-5p showed the highest fold change. The miR pattern of MV was unaffected by EPS. Totally, about 1000 proteins were identified in exosomes and 2000 in MV. EPS changed the content of 73 proteins in exosomes, 97 in MVs, and of these four were changed in both exosomes and MV (GANAB, HSPA9, CNDP2, and ATP5B). By matching the EPS-changed miRs and proteins in exosomes, 31 targets were identified, and among these several promising signaling factors. Of particular interest were CNDP2, an enzyme that generates the appetite regulatory metabolite Lac-Phe, and miR-4433b-3p, which targets CNDP2. Several of the regulated miRs, such as miR-92b-5p, miR-320b, and miR-1233-5p might also mediate interesting signaling functions. In conclusion, we have used a combined transcriptome-proteome approach to describe how EPS affected the cargo of EVs derived from myotubes from morbidly obese patients with T2D, and revealed several new factors, both miRs and proteins, that might act as exercise factors

    Gene expression profiling of Gram-negative bacteria-induced inflammation in human whole blood: The role of complement and CD14-mediated innate immune response

    Get PDF
    Non-sterile pathogen-induced sepsis and sterile inflammation like in trauma or ischemia–reperfusion injury may both coincide with the life threatening systemic inflammatory response syndrome and multi-organ failure. Consequently, there is an urgent need for specific biomarkers in order to distinguish sepsis from sterile conditions. The overall aim of this study was to uncover putative sepsis biomarkers and biomarker pathways, as well as to test the efficacy of combined inhibition of innate immunity key players complement and Toll-like receptor co-receptor CD14 as a possible therapeutic regimen for sepsis. We performed whole blood gene expression analyses using microarray in order to profile Gram-negative bacteria-induced inflammatory responses in an ex vivo human whole blood model. The experiments were performed in the presence or absence of inhibitors of complement proteins (C3 and CD88 (C5a receptor 1)) and CD14, alone or in combination. In addition, we used blood from a C5-deficient donor. Anti-coagulated whole blood was challenged with heat-inactivated Escherichia coli for 2 h, total RNA was isolated and microarray analyses were performed on the Affymetrix GeneChip Gene 1.0 ST Array platform. The initial experiments were performed in duplicates using blood from two healthy donors. C5-deficiency is very rare, and only one donor could be recruited. In order to increase statistical power, a technical replicate of the C5-deficient samples was run. Subsequently, log2-transformed intensities were processed by robust multichip analysis and filtered using a threshold of four. In total, 73 microarray chips were run and analyzed. The normalized and filtered raw data have been deposited in NCBI's Gene Expression Omnibus (GEO) and are accessible with GEO Series accession number GSE55537. Linear models for microarray data were applied to estimate fold changes between data sets and the respective multiple testing adjusted p-values (FDR q-values). The interpretation of the data has been published by Lau et al. in an open access article entitled “CD14 and Complement Crosstalk and Largely Mediate the Transcriptional Response to Escherichia coli in Human Whole Blood as revealed by DNA Microarray” (Lau et al., 2015)

    CD14 and complement crosstalk and largely mediate the transcriptional response to Escherichia coli in human whole blood as revealed by DNA microarray

    Get PDF
    Systemic inflammation like in sepsis is still lacking specific diagnostic markers and effective therapeutics. The first line of defense against intruding pathogens and endogenous damage signals is pattern recognition by e.g., complement and Toll-like receptors (TLR). Combined inhibition of a key complement component (C3 and C5) and TLR-co-receptor CD14 has been shown to attenuate certain systemic inflammatory responses. Using DNA microarray and gene annotation analyses, we aimed to decipher the effect of combined inhibition of C3 and CD14 on the transcriptional response to bacterial challenge in human whole blood. Importantly, combined inhibition reversed the transcriptional changes of 70% of the 2335 genes which significantly responded to heat-inactivated Escherichia coli by on average 80%. Single inhibition was less efficient (p<0.001) but revealed a suppressive effect of C3 on 21% of the responding genes which was partially counteracted by CD14. Furthermore, CD14 dependency of the Escherichia coli-induced response was increased in C5-deficient compared to C5-sufficient blood. The observed crucial distinct and synergistic roles for complement and CD14 on the transcriptional level correspond to their broad impact on the inflammatory response in human blood, and their combined inhibition may become inevitable in the early treatment of acute systemic inflammation

    Transcription and microRNA Profiling of Cultured Human Tympanic Membrane Epidermal Keratinocytes

    No full text
    The human tympanic membrane (TM) has a thin outer epidermal layer which plays an important role in TM homeostasis and ear health. The specialised cells of the TM epidermis have a different physiology compared to normal skin epidermal keratinocytes, displaying a dynamic and constitutive migration that maintains a clear TM surface and assists in regeneration. Here, we characterise and compare molecular phenotypes in keratinocyte cultures from TM and normal skin. TM keratinocytes were isolated by enzymatic digestion and cultured in vitro. We compared global mRNA and microRNA expression of the cultured cells with that of human epidermal keratinocyte cultures. Genes with either relatively higher or lower expression were analysed further using the biostatistical tools g:Profiler and Ingenuity Pathway Analysis. Approximately 500 genes were found differentially expressed. Gene ontology enrichment and Ingenuity analyses identified cellular migration and closely related biological processes to be the most significant functions of the genes highly expressed in the TM keratinocytes. The genes of low expression showed a marked difference in homeobox (HOX) genes of clusters A and C, giving the TM keratinocytes a strikingly low HOX gene expression profile. An in vitro scratch wound assay showed a more individualised cell movement in cells from the tympanic membrane than normal epidermal keratinocytes. We identified 10 microRNAs with differential expression, several of which can also be linked to regulation of cell migration and expression of HOX genes. Our data provides clues to understanding the specific physiological properties of TM keratinocytes, including candidate genes for constitutive migration, and may thus help focus further research

    The acute phase response protein SERPINA3 is increased in tear fluid from the unaffected eyes of patients with unilateral acute anterior uveitis

    No full text
    Background To identify candidate tear fluid biomarkers in patients with unilateral acute anterior uveitis (AAU) that can aid in the differentiation between these patients and patients with bacterial keratitis or healthy controls. Methods Thirteen patients (40.1 ± 16.2 years of age) with unilateral AAU, seven patients with unilateral bacterial keratitis (40.2 ± 15.3 years of age), and 14 healthy subjects (41.1 ± 11.6 years of age) were included. The tear proteome of affected eyes was compared with that of the unaffected eye or healthy controls. Proteins were identified by liquid chromatography tandem mass spectrometry and enzyme-linked immunosorbent assay. Results Relative protein ratios were detected and calculated for 272 unique proteins. Compared with healthy controls and the unaffected eye, the top upregulated proteins in AAU eyes were submaxillary gland androgen regulated protein 3B (SMR3B) and SMR3A. Similarly, the top upregulated proteins in bacterial keratitis were S100 calcium-binding protein A9 and orosomucoid 2. The acute phase response protein Serpin Family A Member 3 (SERPINA3) was increased in the healthy eye of AAU patients (P = 0.019) compared with healthy controls. Laser flare measurements in affected eyes of AAU patients showed positive logarithmic correlation with SERPINA3 in tear samples of the unaffected eye (P = 0.022). The use of SERPINA3 as a tear biomarker yielded a sensitivity of 85% and a specificity of 71% in detecting patients with AAU in the study population. Conclusions The acute phase response protein SERPINA3 was increased in tear samples of unaffected eyes of patients with unilateral AAU compared with healthy controls. This study highlights SERPINA3 as a potential biomarker for AAU. Future research should explore the dynamic properties of SERPINA3 in the tear fluid of active and quiescent uveitis eyes

    Vitamin D metabolites influence expression of genes concerning cellular viability and function in insulin producing β-cells (INS1E)

    No full text
    Background Studies have shown that vitamin D can enhance glucose-stimulated insulin secretion (GSIS) and change the expression of genes in pancreatic β-cells. Still the mechanisms linking vitamin D and GSIS are unknown. Material and methods We used an established β-cell line, INS1E. INS1E cells were pre-treated with 10 nM 1,25(OH)2vitamin D or 10 nM 25(OH)vitamin D for 72 h and stimulated with 22 mM glucose for 60 min. RNA was extracted for gene expression analysis. Results Expression of genes affecting viability, apoptosis and GSIS changed after pre-treatment with both 1,25(OH)2vitamin D and 25(OH)vitamin D in INS1E cells. Stimulation with glucose after pre-treatment of INS1E cells with 1,25(OH)2vitamin D resulted in 181 differentially expressed genes, whereas 526 genes were differentially expressed after pre-treatment with 25(OH)vitamin D. Conclusion Vitamin D metabolites may affect pancreatic β-cells and GSIS through changed gene expression for genes involved in β-cell function and viability
    corecore