852 research outputs found

    Heavy Winter Patch Grazing as an Alternative to Prescribed Burning on the Northern Great Plains

    Get PDF
    Among management systems intended to increase heterogeneity on the landscape, patch burn grazing (PBG) is by far the most prominent and researched method. Though prescribed burning is seen as a healthy disturbance in grassland ecosystems, many landowners in the Northern Great Plains have an aversion to fire. This is due to safety and liability concerns as well as concerns over forage losses and limitations of labor, equipment, and insurance to successfully carry out prescribed burns. Therefore, there is a critical need to evaluate alternative, non-fire management strategies that will encourage rangeland heterogeneity. A study was conducted in 2017-2018 at the Cottonwood Field Station in southwest South Dakota to test the effectiveness of heavy winter patch grazing to simulate fire. The objectives of this study were to determine the extent to which WPG can serve as an alternative management strategy to patch burn grazing to 1) increase vegetation structural heterogeneity and 2) alter livestock grazing behavior to maintain structural heterogeneity through time

    Extension Educators\u27 Views of Scholarship and Performance Evalutation Criteria

    Get PDF
    In response to an organizational goal of increasing scholarship, a survey of faculty and staff in the University of Minnesota Extension Service was conducted to better understand how they define scholarship, its extent of use in their everyday work, and its importance within performance evaluation. While Regional Extension Educators strongly believe they should enhance their scholarship, they also believe that it should not occur at the expense of program management, delivery, and development. In fact, they saw those factors as being more important in performance evaluations than scholarship

    Drosophila Bruce Can Potently Suppress Rpr- and Grim-Dependent but Not Hid-Dependent Cell Death

    Get PDF
    Bruce is a large protein (530 kDa) that contains an N-terminal baculovirus IAP repeat (BIR) and a C-terminal ubiquitin conjugation domain (E2) 1, 2. BRUCE upregulation occurs in some cancers and contributes to the resistance of these cells to DNA-damaging chemotherapeutic drugs [2]. However, it is still unknown whether Bruce inhibits apoptosis directly or instead plays some other more indirect role in mediating chemoresistance, perhaps by promoting drug export, decreasing the efficacy of DNA damage-dependent cell death signaling, or by promoting DNA repair. Here, we demonstrate, using gain-of-function and deletion alleles, that Drosophila Bruce (dBruce) can potently inhibit cell death induced by the essential Drosophila cell death activators Reaper (Rpr) and Grim but not Head involution defective (Hid). The dBruce BIR domain is not sufficient for this activity, and the E2 domain is likely required. dBruce does not promote Rpr or Grim degradation directly, but its antiapoptotic actions do require that their N termini, required for interaction with DIAP1 BIR2, be intact. dBruce does not block the activity of the apical cell death caspase Dronc or the proapoptotic Bcl-2 family member Debcl/Drob-1/dBorg-1/Dbok. Together, these results argue that dBruce can regulate cell death at a novel point

    Commercial grape insect and disease control - 2020

    Get PDF
    The Oklahoma Cooperative Extension Service periodically issues revisions to its publications. The most current edition is made available. For access to an earlier edition, if available for this title, please contact the Oklahoma State University Library Archives by email at [email protected] or by phone at 405-744-6311

    Commercial grape insect and disease control - 2020

    Get PDF
    The Oklahoma Cooperative Extension Service periodically issues revisions to its publications. The most current edition is made available. For access to an earlier edition, if available for this title, please contact the Oklahoma State University Library Archives by email at [email protected] or by phone at 405-744-6311

    Thermal Physiology and Developmental Plasticity of Pigmentation in the Harlequin Bug (Hemiptera: Pentatomidae)

    Get PDF
    Traits that promote the maintenance of body temperatures within an optimal range provide advantages to ectothermic species. Pigmentation plasticity is found in many insects and enhances thermoregulatory potential as increased melanization can result in greater heat retention. The thermal melanism hypothesis predicts that species with developmental plasticity will have darker pigmentation in colder environments, which can be an important adaptation for temperate species experiencing seasonal variation in climate. The harlequin bug (Murgantia histrionica, Hemiptera: Pentatomidae, Hahn 1834) is a widespread invasive crop pest with variable patterning where developmental plasticity in melanization could affect performance. To investigate the impact of temperature and photoperiod on melanization and size, nymphs were reared under two temperatures and two photoperiods simulating summer and fall seasons. The size and degree of melanization of adults were quantified using digital imagery. To assess the effect of coloration on the amount of heat absorption, we monitored the temperature of adults in a heating experiment. Overall, our results supported the thermal melanism hypothesis and temperature had a comparatively larger effect on coloration and size than photoperiod. When heated, the body temperature of individuals with darker pigmentation increased more relative to the ambient air temperature than individuals with lighter pigmentation. These results suggest that colder temperatures experienced late in the season can induce developmental plasticity for a phenotype that improves thermoregulation in this species. Our work highlights environmental signals and consequences for individual performance due to thermal melanism in a common invasive species, where capacity to respond to changing environments is likely contributing to its spread

    Complement in reproductive white adipose tissue characterizes the obese preeclamptic-like BPH/5 mouse prior to and during pregnancy

    Get PDF
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. Preeclampsia (PE) is a serious hypertensive disorder of pregnancy characterized by abnormal placental development with an unknown etiology. To better understand which women will develop PE, a number of maternal risk factors have been identified, including obesity. Visceral white adipose tissue (WAT) contains inflammatory mediators that may contribute to PE. To explore this, we utilized the blood pressure high (BPH)/5 mouse model of superimposed PE that spontaneously recapitulates the maternal PE syndrome. We hypothesized that BPH/5 visceralWAT adjacent to the female reproductive tract (reproductiveWAT) is a source of complement factors that contribute to the inflammatory milieu and angiogenic imbalance at the maternal-fetal interface in this model and in preeclamptic women. To test our hypothesis, we calorie-restricted BPH/5 females for two weeks prior to pregnancy and the first seven days of pregnancy, which attenuated complement component 3 (C3) but not complement factor B, nor complement factor D, (adipsin) in the reproductiveWAT or the implantation site in BPH/5. Furthermore, calorie restriction during pregnancy restored vascular endothelial and placental growth factor mRNA levels in the BPH/5 implantation site. These data show maternal reproductive WAT may be a source of increased C3 during pregnancy, which is increased at the maternal-fetal interface in preeclamptic BPH/5 mice. It also suggests that calorie restriction could regulate inflammatory mediators thought to contribute to placental dysfunction in PE. Future studies are necessary to examine the e_ect of calorie restriction on C3 throughout pregnancy and the role of maternal obesity in PE

    Application of OMI Observations to a Space-Based Indicator of NOx and VOC Controls on Surface Ozone Formation

    Get PDF
    We investigated variations in the relative sensitivity of surface ozone formation in summer to precursor species concentrations of volatile organic compounds (VOCs) and nitrogen oxides (NOx) as inferred from the ratio of the tropospheric columns of formaldehyde to nitrogen dioxide (the "Ratio") from the Aura Ozone Monitoring Instrument (OMI). Our modeling study suggests that ozone formation decreases with reductions in VOCs at Ratios less than 1 and NOx at Ratios greater than 2; both NOx and VOC reductions may decrease ozone formation for Ratios between 1 and 2. Using this criteria. the OMI data indicate that ozone formation became: 1. more sensitive to NOx over most of the United States from 2005 to 2007 because of the substantial decrease in NOx emissions, primarily from stationary sources, and the concomitant decrease in the tropospheric column of NO2. and 2. more sensitive to NOx with increasing temperature, in part because emissions of highly reactive, biogenic isoprene increase with temperature, thus increasing the total VOC reactivity. In cities with relatively low isoprene emissions (e.g .. Chicago). the data clearly indicate that ozone formation became more sensitive to NOx from 2005 to 2007. In cities with relatively high isoprene emissions (e.g ., Atlanta), we found that the increase in the Ratio due to decreasing NOx emissions was not obvious as this signal was convolved with variations in the Ratio associated with the temperature dependence of isoprene emissions and, consequently, the formaldehyde concentration

    Human liver glycogen phosphorylase inhibitors bind at a new allosteric site

    Get PDF
    AbstractBackground: Glycogen phosphorylases catalyze the breakdown of glycogen to glucose-1-phosphate for glycolysis. Maintaining control of blood glucose levels is critical in minimizing the debilitating effects of diabetes, making liver glycogen phosphorylase a potential therapeutic target.Results: The binding site in human liver glycogen phosphorylase (HLGP) for a class of promising antidiabetic agents was identified crystallographically. The site is novel and functions allosterically by stabilizing the inactive conformation of HLGP. The initial view of the complex revealed key structural information and inspired the design of a new class of inhibitors which bind with nanomolar affinity and whose crystal structure is also described.Conclusions: We have identified the binding site of a new class of allosteric HLGP inhibitors. The crystal structure revealed the details of inhibitor binding, led to the design of a new class of compounds, and should accelerate efforts to develop therapeutically relevant molecules for the treatment of diabetes

    Practice Considerations for Adapting In-Person Groups to Telerehabilitation

    Get PDF
    The Coronavirus-2019 (COVID-19) pandemic has shifted research and healthcare system priorities, stimulating literature on implementation and evaluation of telerehabilitation for a variety of patient populations. While there is substantial literature on individual telerehabilitation, evidence about group telerehabilitation remains limited despite its increasing use by rehabilitation providers. Therefore, the purpose of this manuscript is to describe our expert team’s consensus on practice considerations for adapting in-person group rehabilitation to group telerehabilitation to provide rapid guidance during a pandemic and create a foundation for sustainability of group telerehabilitation beyond the pandemic’s end. &nbsp
    • …
    corecore