262 research outputs found
Photon blockade and quantum dynamics in intracavity coherent photoassociation of Bose-Einstein condensates
We demonstrate that a photon blockade effect exists in the intracavity coherent photoassociation of an atomic Bose-Einstein condensate and that the dynamics of the coupled atomic and molecular condensates can only be successfully described by a quantum treatment of all the interacting fields. We show that the usual mean-field calculational approaches give answers that are qualitatively wrong, even for the mean fields. The quantization of the fields gives a degree of freedom that is not present in analogous nonlinear optical processes. The difference between the semiclassical and quantum predictions can actually increase as the three fields increase in size so that there is no obvious classical limit for this process
Soliton ratchets induced by ac forces with harmonic mixing
The ratchet dynamics of a kink (topological soliton) of a dissipative
sine-Gordon equation in the presence of ac forces with harmonic mixing (at
least bi-harmonic) of zero mean is studied. The dependence of the kink mean
velocity on system parameters is investigated numerically and the results are
compared with a perturbation analysis based on a point particle representation
of the soliton. We find that first order perturbative calculations lead to
incomplete descriptions, due to the important role played by the soliton-phonon
interaction in establishing the phenomenon. The role played by the temporal
symmetry of the system in establishing soliton ratchets is also emphasized. In
particular, we show the existence of an asymmetric internal mode on the kink
profile which couples to the kink translational mode through the damping in the
system. Effective soliton transport is achieved when the internal mode and the
external force get phase locked. We find that for kinks driven by bi-harmonic
drivers consisting of the superposition of a fundamental driver with its first
odd harmonic, the transport arises only due to this {\it internal mode}
mechanism, while for bi-harmonic drivers with even harmonic superposition, also
a point-particle contribution to the drift velocity is present. The phenomenon
is robust enough to survive the presence of thermal noise in the system and can
lead to several interesting physical applications.Comment: 9 pages, 13 figure
Model study on the photoassociation of a pair of trapped atoms into an ultralong-range molecule
Using the method of quantum-defect theory, we calculate the ultralong-range
molecular vibrational states near the dissociation threshold of a diatomic
molecular potential which asymptotically varies as . The properties of
these states are of considerable interest as they can be formed by
photoassociation (PA) of two ground state atoms. The Franck-Condon overlap
integrals between the harmonically trapped atom-pair states and the
ultralong-range molecular vibrational states are estimated and compared with
their values for a pair of untrapped free atoms in the low-energy scattering
state. We find that the binding between a pair of ground-state atoms by a
harmonic trap has significant effect on the Franck-Condon integrals and thus
can be used to influence PA. Trap-induced binding between two ground-state
atoms may facilitate coherent PA dynamics between the two atoms and the
photoassociated diatomic molecule.Comment: 11 pages, 4 figures, to appear in Phys. Rev. A (September, 2003
Soil nutrients and beta diversity in the Bornean Dipterocarpaceae: evidence for niche partitioning by tropical rain forest trees
1   The relative importance of niche- and dispersal-mediated processes in structuring diverse tropical plant communities remains poorly understood. Here, we link mesoscale beta diversity to soil variation throughout a lowland Bornean watershed underlain by alluvium, sedimentary and granite parent materials ( c . 340 ha, 8–200 m a.s.l.). We test the hypothesis that species turnover across the habitat gradient reflects interspecific partitioning of soil resources. 2   Floristic inventories (≥ 1 cm d.b.h.) of the Dipterocarpaceae, the dominant Bornean canopy tree family, were combined with extensive soil analyses in 30 (0.16 ha) plots. Six samples per plot were analysed for total C, N, P, K, Ca and Mg, exchangeable K, Ca and Mg, extractable P, texture, and pH. 3   Extractable P, exchangeable K, and total C, N and P varied significantly among substrates and were highest on alluvium. Thirty-one dipterocarp species ( n  = 2634 individuals, five genera) were recorded. Dipterocarp density was similar across substrates, but richness and diversity were highest on nutrient-poor granite and lowest on nutrient-rich alluvium. 4   Eighteen of 22 species were positively or negatively associated with parent material. In 8 of 16 abundant species, tree distribution (≥ 10 cm d.b.h.) was more strongly non-random than juveniles (1–10 cm d.b.h.), suggesting higher juvenile mortality in unsuitable habitats. The dominant species Dipterocarpus sublamellatus (> 50% of stems) was indifferent to substrate, but nine of 11 ‘subdominant’ species (> 8 individuals ha −1 ) were substrate specialists. 5   Eighteen of 22 species were significantly associated with soil nutrients, especially P, Mg and Ca. Floristic variation was significantly correlated with edaphic and geographical distance for all stems ≥ 1 cm d.b.h. in Mantel analyses. However, juvenile variation (1–10 cm d.b.h.) was more strongly related to geographical distance than edaphic factors, while the converse held for established trees (≥ 10 cm d.b.h.), suggesting increased importance of niche processes with size class. 6   Pervasive dipterocarp associations with soil factors suggest that niche partitioning structures dipterocarp tree communities. Yet, much floristic variation unrelated to soil was correlated with geographical distance between plots, suggesting that dispersal and niche processes jointly determine mesoscale beta diversity in the Bornean Dipterocarpaceae. Journal of Ecology (2005) doi: 10.1111/j.1365-2745.2005.01077.xPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72822/1/j.1365-2745.2005.01077.x.pd
D-brane Deconstructions in IIB Orientifolds
With model building applications in mind, we collect and develop basic
techniques to analyze the landscape of D7-branes in type IIB compact Calabi-Yau
orientifolds, in three different pictures: F-theory, the D7 worldvolume theory
and D9-anti-D9 tachyon condensation. A significant complication is that
consistent D7-branes in the presence of O7^- planes are generically singular,
with singularities locally modeled by the Whitney Umbrella. This invalidates
the standard formulae for charges, moduli space and flux lattice dimensions. We
infer the correct formulae by comparison to F-theory and derive them
independently and more generally from the tachyon picture, and relate these
numbers to the closed string massless spectrum of the orientifold
compactification in an interesting way. We furthermore give concrete recipes to
explicitly and systematically construct nontrivial D-brane worldvolume flux
vacua in arbitrary Calabi-Yau orientifolds, illustrate how to read off D-brane
flux content, enhanced gauge groups and charged matter spectra from tachyon
matrices, and demonstrate how brane recombination in general leads to flux
creation, as required by charge conservation and by equivalence of geometric
and gauge theory moduli spaces.Comment: 49 pages, v2: two references adde
Corner and sloped culvert baffles improve the upstream passage of adult European eels (Anguilla anguilla)
Installation of baffles intended to improve fish passage through culverts can reduce discharge capacity and trap debris, increasing flood risk. A sloping upstream face may reduce this risk, but new designs must be tested for fish passage efficiency. The European eel (Anguilla anguilla) is a critically endangered species, yet the suitability of even common baffle types to aid upstream movement has not been tested. This study compared the water depth, velocity, turbulent kinetic energy (TKE), and upstream passage performance of adult yellow-phase eels, between three 6 m long culvert models: smooth and unmodified (control); containing corner baffles (treatment 1); and with prototype sloped baffles installed (treatment 2). Passage of individual fish was assessed during 25 one-hour trials per model. Performance was quantified as entrance efficiency, number of entries per fish, passage efficiency, and overall efficiency. Total and passage delay, and successful passage time were also evaluated. Despite some individuals being able to swim against unexpectedly high water velocities (>1.5 m s?1 for 4 m), passage performance in the control was poor, with an overall efficiency of 28%. Compared to the control, both treatments increased the mean centreline water depth by approximately 0.11 m, created heterogeneous flow conditions with low velocity resting areas, and reduced maximum velocities. As a result, entrance rate and all efficiency parameters were higher for the treatments than for the control (overall efficiency = 84%), despite longer passage delay. The TKE was slightly higher in treatment 2 than 1, but there was no difference in water depth or overall efficiency. The findings show that both corner and sloped baffles can mitigate for impeded upstream adult eel movement. The extent to which the sloping upstream face will improve debris transport should be explored further
Recommended from our members
Pegasus IV: Discovery and Spectroscopic Confirmation of an Ultra-faint Dwarf Galaxy in the Constellation Pegasus
We report the discovery of Pegasus IV, an ultra-faint dwarf galaxy found in archival data from the Dark Energy Camera processed by the DECam Local Volume Exploration Survey. Pegasus IV is a compact, ultra-faint stellar system (r1 2 = 41-+68 pc; MV = −4.25 ± 0.2 mag) located at a heliocentric distance of 90-+64 kpc. Based on spectra of seven nonvariable member stars observed with Magellan/IMACS, we confidently resolve Pegasus IV’s velocity dispersion, measuring sv = 3.3-+1.11.7 km s−1 (after excluding three velocity outliers); this implies a mass-to-light ratio of M1 2 LV,1 2 = 167-+99224M☉ L☉ for the system. From the five stars with the highest signal-to-noise spectra, we also measure a systemic metallicity of [Fe/H] =-2.63-+0.300.26 dex, making Pegasus IV one of the most metal-poor ultra-faint dwarfs. We tentatively resolve a nonzero metallicity dispersion for the system. These measurements provide strong evidence that Pegasus IV is a dark-matter-dominated dwarf galaxy, rather than a star cluster. We measure Pegasus IV’s proper motion using data from Gaia Early Data Release 3, finding (μα*, μδ) = (0.33 ± 0.07, −0.21 ± 0.08) mas yr−1. When combined with our measured systemic velocity, this proper motion suggests that Pegasus IV is on an elliptical, retrograde orbit, and is currently near its orbital apocenter. Lastly, we identify three potential RR Lyrae variable stars within Pegasus IV, including one candidate member located more than 10 half-light radii away from the system’s centroid. The discovery of yet another ultra-faint dwarf galaxy strongly suggests that the census of Milky Way satellites is still incomplete, even within 100 kpc
Phosphate fertilization and phosphorus forms in an Oxisol under no-till
Under no-till phosphorus (P) accumulates in a few centimeters of the topsoil layer. Plant residues left on the soil surface release P and organic acids, which may improve P availability and fertilizer efficiency, including both soluble (such as triple super phosphate) and less soluble sources (such as reactive natural phosphates). In this study, soybean response to P fertilizer and P forms in the top 40 cm of an Oxisol were evaluated after surface application of different phosphates in a 5-year-old no-till system. Treatments consisted of 0 or 80 kg ha-1 of total P2O5 applied on the soil surface, both as natural reactive phosphate (NRP) or triple super phosphate (TSP). In addition, 80 kg ha-1 of P2O5 were applied to subplots, in furrows below and beside the soybean (Glycine max L.) seeds, in different combinations of NRP and TSP. Soil samples were taken before and after the soybean growth, down to 0.40 m and soil phosphorus was chemically fractionated. The responses to NRP were similar to TSP, with an increase in P reserves at greater depths, even in non-available forms, such as P-occluded. After the soybean harvest, P-occluded levels were lower at the surface layer, but an increase was observed in the soluble, organic and total P down to 40 cm. An improved P distribution in soil depth, especially regarding the soluble and organic forms, resulted in higher soybean yields, even when the phosphates were applied to the soil surface.Em semeadura direta o fósforo (P) acumula-se na camada mais superficial do solo, mas os resÃduos deixados na superfÃcie liberam P e ácidos orgânicos, que podem melhorar a disponibilidade e a eficiência de fertilizantes como o superfosfato triplo e fosfatos naturais reativos. Neste estudo, a resposta da soja à adubação com P e as formas de P até 40 cm de profundidade do solo foram avaliadas após a aplicação de fosfatos em um sistema conduzido em semeadura direta há cinco anos. Os tratamentos consistiram de 0 ou 80 kg ha-1 P2O5 total, aplicados na superfÃcie do solo como fosfato natural reativo (FNR) ou superfosfato triplo (SFT). Nas subparcelas foram aplicados, no sulco de semeadura, 80 kg ha-1 de P2O5, em diferentes combinações de FNR e SFT. Amostras de solo foram coletadas até 0.4 m, antes e depois do cultivo da soja (Glycine max L.), para fracionamento do P. As respostas ao FNR foram semelhantes à s do SFT, com aumento das reservas de P em profundidade, mesmo em formas não-disponÃveis como P-ocluso. Após a colheita da soja, os teores de P-ocluso diminuÃram na camada mais superficial, mas foi observado um aumento nas formas solúvel, orgânica e P - total em toda a espessura de solo estudada. A melhor distribuição do P no solo, principalmente em formas solúvel e orgânica, resultou em maior produtividade da soja, mesmo quando o fertilizante foi aplicado na superfÃcie do solo
- …