2,335 research outputs found
Separation of Oligosaccharides from Lotus Seeds via Medium-pressure Liquid Chromatography Coupled with ELSD and DAD
peer-reviewedLotus seeds were identified by the Ministry of Public Health of China as both food and medicine. One general function of lotus seeds is to improve intestinal health. However, to date, studies evaluating the relationship between bioactive compounds in lotus seeds and the physiological activity of the intestine are limited. In the present study, by using medium pressure liquid chromatography coupled with evaporative light-scattering detector and diode-array detector, five oligosaccharides were isolated and their structures were further characterized by electrospray ionization-mass spectrometry and gas chromatography-mass spectrometry. In vitro testing determined that LOS3-1 and LOS4 elicited relatively good proliferative effects on Lactobacillus delbrueckii subsp. bulgaricus. These results indicated a structure-function relationship between the physiological activity of oligosaccharides in lotus seeds and the number of probiotics applied, thus providing room for improvement of this particular feature. Intestinal probiotics may potentially become a new effective drug target for the regulation of immunity
Dynamic Locomotor Capabilities Revealed by Early Dinosaur Trackmakers from Southern Africa
BACKGROUND: A new investigation of the sedimentology and ichnology of the Early Jurassic Moyeni tracksite in Lesotho, southern Africa has yielded new insights into the behavior and locomotor dynamics of early dinosaurs. METHODOLOGY/PRINCIPAL FINDINGS: The tracksite is an ancient point bar preserving a heterogeneous substrate of varied consistency and inclination that includes a ripple-marked riverbed, a bar slope, and a stable algal-matted bar top surface. Several basal ornithischian dinosaurs and a single theropod dinosaur crossed its surface within days or perhaps weeks of one another, but responded to substrate heterogeneity differently. Whereas the theropod trackmaker accommodated sloping and slippery surfaces by gripping the substrate with its pedal claws, the basal ornithischian trackmakers adjusted to the terrain by changing between quadrupedal and bipedal stance, wide and narrow gauge limb support (abduction range = 31 degrees ), and plantigrade and digitigrade foot posture. CONCLUSIONS/SIGNIFICANCE: The locomotor adjustments coincide with changes in substrate consistency along the trackway and appear to reflect 'real time' responses to a complex terrain. It is proposed that these responses foreshadow important locomotor transformations characterizing the later evolution of the two main dinosaur lineages. Ornithischians, which shifted from bipedal to quadrupedal posture at least three times in their evolutionary history, are shown to have been capable of adopting both postures early in their evolutionary history. The substrate-gripping behavior demonstrated by the early theropod, in turn, is consistent with the hypothesized function of pedal claws in bird ancestors
Translational Cancer Research: Balancing Prevention and Treatment to Combat Cancer Globally
Cancer research is drawing on the human genome project to develop new molecular-targeted treatments. This is an exciting but insufficient response to the growing, global burden of cancer, particularly as the projected increase in new cases in the coming decades is increasingly falling on developing countries. The world is not able to treat its way out of the cancer problem. However, the mechanistic insights from basic science can be harnessed to better understand cancer causes and prevention, thus underpinning a complementary public health approach to cancer control. This manuscript focuses on how new knowledge about the molecular and cellular basis of cancer, and the associated high-throughput laboratory technologies for studying those pathways, can be applied to population-based epidemiological studies, particularly in the context of large prospective cohorts with associated biobanks to provide an evidence base for cancer prevention. This integrated approach should allow a more rapid and informed translation of the research into educational and policy interventions aimed at risk reduction across a population
Spatiotemporal mortality and demographic trends in a small cetacean: Strandings to inform conservation management
With global increases in anthropogenic pressures on wildlife populations comes a responsibility to manage them effectively. The assessment of marine ecosystem health is challenging and often relies on monitoring indicator species, such as cetaceans. Most cetaceans are however highly mobile and spend the majority of their time hidden from direct view, resulting in uncertainty on even the most basic population metrics. Here, we discuss the value of long-term and internationally combined stranding records as a valuable source of information on the demographic and mortality trends of the harbour porpoise (Phocoena phocoena) in the North Sea. We analysed stranding records (n = 16,181) from 1990 to 2017 and demonstrate a strong heterogeneous seasonal pattern of strandings throughout the North Sea, indicative of season-specific distribution or habitat use, and season-specific mortality. The annual incidence of strandings has increased since 1990, with a notable steeper rise particularly in the southern North Sea since 2005. A high density of neonatal strandings occurred specifically in the eastern North Sea, indicative of areas important for calving, and large numbers of juvenile males stranded in the southern parts, indicative of a population sink or reflecting higher male dispersion. These findings highlight the power of stranding records to detect potentially vulnerable population groups in time and space. This knowledge is vital for managers and can guide, for example, conservation measures such as the establishment of time-area-specific limits to potentially harmful human activities, aiming to reduce the number and intensity of human-wildlife conflicts
Quality of medication use in primary care - mapping the problem, working to a solution: a systematic review of the literature
Background: The UK, USA and the World Health Organization have identified improved patient safety in healthcare as a priority. Medication error has been identified as one of the most frequent forms of medical error and is associated with significant medical harm. Errors are the result of the systems that produce them. In industrial settings, a range of systematic techniques have been designed to reduce error and waste. The first stage of these processes is to map out the whole system and its reliability at each stage. However, to date, studies of medication error and solutions have concentrated on individual parts of the whole system. In this paper we wished to conduct a systematic review of the literature, in order to map out the medication system with its associated errors and failures in quality, to assess the strength of the evidence and to use approaches from quality management to identify ways in which the system could be made safer.
Methods: We mapped out the medicines management system in primary care in the UK. We conducted a systematic literature review in order to refine our map of the system and to establish the quality of the research and reliability of the system.
Results: The map demonstrated that the proportion of errors in the management system for medicines in primary care is very high. Several stages of the process had error rates of 50% or more: repeat prescribing reviews, interface prescribing and communication and patient adherence. When including the efficacy of the medicine in the system, the available evidence suggested that only between 4% and 21% of patients achieved the optimum benefit from their medication. Whilst there were some limitations in the evidence base, including the error rate measurement and the sampling strategies employed, there was sufficient information to indicate the ways in which the system could be improved, using management approaches. The first step to improving the overall quality would be routine monitoring of adherence, clinical effectiveness and hospital admissions.
Conclusion: By adopting the whole system approach from a management perspective we have found where failures in quality occur in medication use in primary care in the UK, and where weaknesses occur in the associated evidence base. Quality management approaches have allowed us to develop a coherent change and research agenda in order to tackle these, so far, fairly intractable problems
Traditional electrosurgery and a low thermal injury dissection device yield different outcomes following bilateral skin-sparing mastectomy: a case report
<p>Abstract</p> <p>Introduction</p> <p>Although a skin- and nipple-sparing mastectomy technique offers distinct cosmetic and reconstructive advantages over traditional methods, partial skin flap and nipple necrosis remain a significant source of post-operative morbidity. Prior work has suggested that collateral thermal damage resulting from electrocautery use during skin flap development is a potential source of this complication. This report describes the case of a smoker with recurrent ductal carcinoma <it>in situ </it>(DCIS) who experienced significant unilateral skin necrosis following bilateral skin-sparing mastectomy while participating in a clinical trial examining mastectomy outcomes with two different surgical devices. This unexpected complication has implications for the choice of dissection devices in procedures requiring skin flap preservation.</p> <p>Case presentation</p> <p>The patient was a 61-year-old Caucasian woman who was a smoker with recurrent DCIS of her right breast. As part of the clinical trial, each breast was randomized to either the standard of care treatment group (a scalpel and a traditional electrosurgical device) or treatment with a novel, low thermal injury dissection device, allowing for a direct, internally controlled comparison of surgical outcomes. Post-operative follow-up at six days was unremarkable for both operative sites. At 16 days post-surgery, the patient presented with a significant wound necrosis in the mastectomy site randomized to the control study group. Following debridement and closure, this site progressively healed over 10 weeks. The contralateral mastectomy, randomized to the alternative device, healed normally.</p> <p>Conclusion</p> <p>We hypothesize that thermal damage to the subcutaneous microvasculature during flap dissection may have contributed to this complication and that the use of a low thermal injury dissection device may be advantageous in select patients undergoing skin- and nipple-sparing mastectomy.</p
The response of perennial and temporary headwater stream invertebrate communities to hydrological extremes
The headwaters of karst rivers experience considerable hydrological variability, including spates and streambed drying. Extreme summer flooding on the River Lathkill (Derbyshire, UK) provided the opportunity to examine the invertebrate community response to unseasonal spate flows, flow recession and, at temporary sites, streambed drying. Invertebrates were sampled at sites with differing flow permanence regimes during and after the spates. Following streambed drying at temporary sites, dewatered surface sediments were investigated as a refugium for aquatic invertebrates. Experimental rehydration of these dewatered sediments was conducted to promote development of desiccation-tolerant life stages. At perennial sites, spate flows reduced invertebrate abundance and diversity, whilst at temporary sites, flow reactivation facilitated rapid colonisation of the surface channel by a limited number of invertebrate taxa. Following streambed drying, 38 taxa were recorded from the dewatered and rehydrated sediments, with Oligochaeta being the most abundant taxon and Chironomidae (Diptera) the most diverse. Experimental rehydration of dewatered sediments revealed the presence of additional taxa, including Stenophylax sp. (Trichoptera: Limnephilidae) and Nemoura sp. (Plecoptera: Nemouridae). The influence of flow permanence on invertebrate community composition was apparent despite the aseasonal high-magnitude flood events
Isoforms of U1-70k control subunit dynamics in the human spliceosomal U1 snRNP
Most human protein-encoding genes contain multiple exons that are spliced together, frequently in alternative arrangements, by the spliceosome. It is established that U1 snRNP is an essential component of the spliceosome, in human consisting of RNA and ten proteins, several of which are post- translationally modified and exist as multiple isoforms. Unresolved and challenging to investigate are the effects of these post translational modifications on the dynamics, interactions and stability of the particle. Using mass spectrometry we investigate the composition and dynamics of the native human U1 snRNP and compare native and recombinant complexes to isolate the effects of various subunits and isoforms on the overall stability. Our data reveal differential incorporation of four protein isoforms and dynamic interactions of subunits U1-A, U1-C and Sm-B/B’. Results also show that unstructured post- ranslationally modified C-terminal tails are
responsible for the dynamics of Sm-B/B’ and U1-C and that their interactions with the Sm core are controlled by binding to different U1-70k isoforms and their phosphorylation status in vivo. These results therefore provide the important functional link between proteomics and structure as well as insight into the dynamic quaternary structure of the native U1 snRNP important for its function.This work was funded by: BBSRC (OVM), BBSRC and EPSRC (HH and NM), EU Prospects (HH), European Science Foundation (NM), the Royal Society (CVR), and fellowship from JSPS and HFSP (YM and DAPK respectively)
Neurogenesis Drives Stimulus Decorrelation in a Model of the Olfactory Bulb
The reshaping and decorrelation of similar activity patterns by neuronal
networks can enhance their discriminability, storage, and retrieval. How can
such networks learn to decorrelate new complex patterns, as they arise in the
olfactory system? Using a computational network model for the dominant neural
populations of the olfactory bulb we show that fundamental aspects of the adult
neurogenesis observed in the olfactory bulb -- the persistent addition of new
inhibitory granule cells to the network, their activity-dependent survival, and
the reciprocal character of their synapses with the principal mitral cells --
are sufficient to restructure the network and to alter its encoding of odor
stimuli adaptively so as to reduce the correlations between the bulbar
representations of similar stimuli. The decorrelation is quite robust with
respect to various types of perturbations of the reciprocity. The model
parsimoniously captures the experimentally observed role of neurogenesis in
perceptual learning and the enhanced response of young granule cells to novel
stimuli. Moreover, it makes specific predictions for the type of odor
enrichment that should be effective in enhancing the ability of animals to
discriminate similar odor mixtures
Population Response to Habitat Fragmentation in a Stream-Dwelling Brook Trout Population
Fragmentation can strongly influence population persistence and expression of life-history strategies in spatially-structured populations. In this study, we directly estimated size-specific dispersal, growth, and survival of stream-dwelling brook trout in a stream network with connected and naturally-isolated tributaries. We used multiple-generation, individual-based data to develop and parameterize a size-class and location-based population projection model, allowing us to test effects of fragmentation on population dynamics at local (i.e., subpopulation) and system-wide (i.e., metapopulation) scales, and to identify demographic rates which influence the persistence of isolated and fragmented populations. In the naturally-isolated tributary, persistence was associated with higher early juvenile survival (∼45% greater), shorter generation time (one-half) and strong selection against large body size compared to the open system, resulting in a stage-distribution skewed towards younger, smaller fish. Simulating barriers to upstream migration into two currently-connected tributary populations caused rapid (2–6 generations) local extinction. These local extinctions in turn increased the likelihood of system-wide extinction, as tributaries could no longer function as population sources. Extinction could be prevented in the open system if sufficient immigrants from downstream areas were available, but the influx of individuals necessary to counteract fragmentation effects was high (7–46% of the total population annually). In the absence of sufficient immigration, a demographic change (higher early survival characteristic of the isolated tributary) was also sufficient to rescue the population from fragmentation, suggesting that the observed differences in size distributions between the naturally-isolated and open system may reflect an evolutionary response to isolation. Combined with strong genetic divergence between the isolated tributary and open system, these results suggest that local adaptation can ‘rescue’ isolated populations, particularly in one-dimensional stream networks where both natural and anthropogenically-mediated isolation is common. However, whether rescue will occur before extinction depends critically on the race between adaptation and reduced survival in response to fragmentation
- …