57 research outputs found

    No impact of polymorphism in the phosphodiesterase 5A gene in Cavalier King Charles Spaniels on pimobendan-induced inhibition of platelet aggregation response

    Get PDF
    Background: A variant in the canine phosphodiesterase (PDE) 5A gene (PDE5A: E90K) is associated with decreased concentrations of circulating cyclic guanosine monophosphate (cGMP) and response to PDE5 inhibitor treatment. Pimobendan is a PDE inhibitor recommended for medical treatment of certain stages of myxomatous mitral valve disease (MMVD) in dogs.Hypothesis: PDE5A:E90K polymorphism attenuates the inhibitory effect of pimobendan on in vitro platelet aggregation and increases basal platelet aggregation in Cavalier King Charles Spaniels (CKCS). Selected clinical variables (MMVD severity, sex, age, hematocrit, platelet count in platelet-rich plasma [PRP], and echocardiographic left ventricular fractional shortening [LV FS]) will not show an association with results.Animals: Fifty-two privately owned CKCS with no or preclinical MMVD.Methods: Using blood samples, we prospectively assessed PDE5A genotype using Sanger sequencing and adenosine diphosphate-induced platelet aggregation response (area under the curve [AUC], maximal aggregation [MaxA], and velocity [Vel]) with and without pimobendan using light transmission aggregometry. Dogs also underwent echocardiography.Results: Pimobendan inhibited platelet function as measured by AUC, MaxA, and Vel at a concentration of 10 mu M (P <.0001) and Vel at 0.03 mu M (P <.001). PDE5A:E90K polymorphism did not influence the inhibitory effect of pimobendan or basal platelet aggregation response.Conclusions and Clinical Importance: The PDE5A:E90K polymorphism did not influence in vitro basal platelet aggregation response or the inhibitory effect of pimobendan on platelet aggregation in CKCS. Dogs with the PDE5A:E90K polymorphism did not appear to have altered platelet function or response to pimobendan treatment

    GĂśttingen minipig model of diet-induced atherosclerosis: influence of mild streptozotocin-induced diabetes on lesion severity and markers of inflammation evaluated in obese, obese and diabetic, and lean control animals

    Get PDF
    BACKGROUND: From a pharmacological perspective, readily-available, well-characterized animal models of cardiovascular disease, including relevant in vivo markers of atherosclerosis are important for evaluation of novel drug candidates. Furthermore, considering the impact of diabetes mellitus on atherosclerosis in human patients, inclusion of this disease aspect in the characterization of a such model, is highly relevant. The objective of this study was to evaluate the effect of mild streptozotocin-induced diabetes on ex- and in vivo end-points in a diet-induced atherosclerotic minipig model. METHODS: Castrated male Göttingen minipigs were fed standard chow (CD), atherogenic diet alone (HFD) or with superimposed mild streptozotocin-induced diabetes (HFD-D). Circulating markers of inflammation (C-reactive protein (CRP), oxidized low-density lipoprotein (oxLDL), plasminogen activator inhibitor-1, lipid and glucose metabolism were evaluated together with coronary and aortic atherosclerosis after 22 or 43 diet-weeks. Group differences were evaluated by analysis of variance for parametric data and Kruskal–Wallis test for non-parametric data. For qualitative assessments, Fisher’s exact test was applied. For all analyses, p < 0.05 was considered statistically significant. RESULTS: Overall, HFD and HFD-D displayed increased CRP, oxLDL and lipid parameters compared to CD at both time points. HFD-D displayed impaired glucose metabolism as compared to HFD and CD. Advanced atherosclerotic lesions were observed in both coronary arteries and aorta of HFD and HFD-D, with more advanced plaque findings in the aorta but without differences in lesion severity or distribution between HFD and HFD-D. Statistically, triglyceride was positively (p = 0.0039), and high-density lipoprotein negatively (p = 0.0461) associated with aortic plaque area. CONCLUSIONS: In this model, advanced coronary and aortic atherosclerosis was observed, with increased levels of inflammatory markers, clinically relevant to atherosclerosis. No effect of mild streptozotocin-induced diabetes was observed on plaque area, lesion severity or inflammatory markers. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12967-015-0670-2) contains supplementary material, which is available to authorized users

    Causes of genome instability: the effect of low dose chemical exposures in modern society.

    Get PDF
    Genome instability is a prerequisite for the development of cancer. It occurs when genome maintenance systems fail to safeguard the genome's integrity, whether as a consequence of inherited defects or induced via exposure to environmental agents (chemicals, biological agents and radiation). Thus, genome instability can be defined as an enhanced tendency for the genome to acquire mutations; ranging from changes to the nucleotide sequence to chromosomal gain, rearrangements or loss. This review raises the hypothesis that in addition to known human carcinogens, exposure to low dose of other chemicals present in our modern society could contribute to carcinogenesis by indirectly affecting genome stability. The selected chemicals with their mechanisms of action proposed to indirectly contribute to genome instability are: heavy metals (DNA repair, epigenetic modification, DNA damage signaling, telomere length), acrylamide (DNA repair, chromosome segregation), bisphenol A (epigenetic modification, DNA damage signaling, mitochondrial function, chromosome segregation), benomyl (chromosome segregation), quinones (epigenetic modification) and nano-sized particles (epigenetic pathways, mitochondrial function, chromosome segregation, telomere length). The purpose of this review is to describe the crucial aspects of genome instability, to outline the ways in which environmental chemicals can affect this cancer hallmark and to identify candidate chemicals for further study. The overall aim is to make scientists aware of the increasing need to unravel the underlying mechanisms via which chemicals at low doses can induce genome instability and thus promote carcinogenesis

    Polymorphisms in the serotonin transporter gene and circulating concentrations of neurotransmitters in Cavalier King Charles Spaniels with myxomatous mitral valve disease

    Get PDF
    Background The neurotransmitter serotonin (5-HT) affects valvular degeneration and dogs with myxomatous mitral valve disease (MMVD) exhibit alterations in 5-HT signaling. In Maltese dogs, 3 single nucleotide polymorphisms (SNPs) in the 5-HT transporter (SERT) gene are suggested to associate with MMVD. Hypothesis/Objectives Determine the association of SERT polymorphisms on MMVD severity and serum 5-HT concentration in Cavalier King Charles Spaniels (CKCS). Additionally, investigate the association between selected clinical and hematologic variables and serum 5-HT and assess the correlation between HPLC and ELISA measurements of serum 5-HT. Animals Seventy-one CKCS (42 females and 29 males; 7.8 [4.7;9.9] years (median [Q1;Q3])) in different MMVD stages. Methods This prospective study used TaqMan genotyping assays to assess SERT gene polymorphisms. Neurotransmitter concentrations were assessed by HPLC and ELISA. Results TaqMan analyses identified none of the selected SERT polymorphisms in any of the CKCS examined. Serum 5-HT was associated with platelet count (P < .001) but not MMVD severity, age or medical therapy and did not correlate with serum concentration of the 5-HT metabolite, 5-hydroxyindoleacetic acid. The ELISA serum 5-HT correlated with HPLC measurements (rho = .87; P < .0001) but was lower (mean difference = -22 ng/mL; P = .02) independent of serum 5-HT concentration (P = .2). Conclusions and Clinical Importance Selected SERT SNPs associated with MMVD in Maltese dogs were not found in CKCS and only platelet count influenced serum 5-HT concentration. These SNPs are unlikely to be associated with MMVD pathophysiology or serum 5-HT concentration in CKCS. HPLC and ELISA serum 5-HT demonstrated good correlation but ELISA systematically underestimated 5-HT

    Laboratory work and pregnancy outcomes: a study within the National Birth Cohort in Denmark

    Get PDF
    AIMS: To examine pregnancy outcomes in women doing laboratory work. METHODS: Using data from the Danish National Birth Cohort (1997–2003), the authors conducted a prospective cohort study of 1025 female laboratory technicians and 8037 female teachers (as reference). The laboratory technicians were asked about laboratory work tasks during pregnancy in an interview (at around 16 weeks of gestation). Pregnancy outcomes were obtained by linking the cohort to the national registers. Hazard ratios (HRs) of late fetal loss and diagnosing of congenital malformations were calculated by using Cox regression, and odds ratios (ORs) of preterm birth and small for gestational age were calculated by using logistic regression. RESULTS: Overall, there were no significant differences in pregnancy outcomes between laboratory technicians and teachers. However, we found that laboratory technicians working with radioimmunoassay or radiolabelling had an increased risk of preterm birth (OR = 2.2, 95% CI 0.8 to 6.2 for radioimmunoassay, and OR = 1.9, 95% CI 0.8 to 4.6 for radiolabelling) and “major” malformations (HR = 2.1, 95% CI 1.0 to 4.7 for radioimmunoassay, and HR = 1.8, 95% CI 0.9 to 3.7 for radiolabelling). The ORs of preterm birth doubled for women working with these tasks every day or several times a week. When an exposure matrix was applied, an increased risk of “major” malformations for exposure to organic solvents was seen. CONCLUSIONS: The results did not indicate any high risk of reproductive failures in laboratory technicians in general. Exposure to radioisotopes may carry a high risk of preterm birth and congenital malformations. This finding deserves further investigation
    • …
    corecore