429 research outputs found

    FANCF methylation contributes to chemoselectivity in ovarian cancer

    Get PDF
    AbstractA new model of ovarian cancer tumor progression implicates aberrant FANCF promoter methylation that is associated with gene silencing and disruption of the Fanconi-anemia-BRCA pathway. Disruption of the pathway occurs de novo in ovarian cancers and may contribute to selective sensitivity to platinum salts

    β-Catenin is required for the tumorigenic behavior of triple-negative breast cancer cells

    Get PDF
    Our previous data illustrated that activation of the canonical Wnt signaling pathway was enriched in triple-negative breast cancer and associated with reduced overall survival in all patients. To determine whether Wnt signaling may be a promising therapeutic target for triple-negative breast cancer, we investigated whether β-catenin was necessary for tumorigenic behaviors in vivo and in vitro. β-catenin expression level was significantly reduced in two human triple-negative breast cancer cell lines, MDA-MB-231 and HCC38, using lentiviral delivery of β-catenin-specific small hairpin RNAs (shRNAs). Upon implantation of the cells in the mammary fat pad of immunocompromised mice, we found that β-catenin shRNA HCC38 cells formed markedly smaller tumors than control cells and grew much more slowly. In in vitro assays, β-catenin silencing significantly reduced the percentage of Aldefluor-positive cells, a read-out of the stem-like cell population, as well as the expression of stem cell-related target genes including Bmi-1 and c-Myc. β-catenin-knockdown cells were also significantly impaired in their ability to migrate in wound-filling assays and form anchorage-independent colonies in soft agar. β-catenin-knockdown cells were more sensitive to chemotherapeutic agents doxorubicin and cisplatin. Collectively, these data suggest that β-catenin is required for triple-negative breast cancer development by controlling numerous tumor-associated properties, such as migration, stemness, anchorage-independent growth and chemosensitivity

    Afatinib efficacy against squamous cell carcinoma of the head and neck cell lines in vitro and in vivo.

    Get PDF
    Epidermal growth factor receptor (EGFR) inhibitors have demonstrated efficacy in squamous cell carcinoma of the head and neck (SCCHN). In addition to EGFR, other ErbB family members are expressed and activated in SCCHN. Afatinib is an ErbB family blocker that has been approved for treating patients with EGFR-mutated nonsmall cell lung cancer. We sought to determine the efficacy of afatinib in preclinical models and compare this to other EGFR-targeted agents. Afatinib efficacy was characterized in a panel of ten SCCHN cell lines and found to be most effective against cell lines amplified for EGFR. Afatinib had lower IC(50) values than did gefitinib against the same panel. Two EGFR-amplified cell lines that are resistant to gefitinib are sensitive to afatinib. Cetuximab was not found to have a synergistic effect with afatinib either in vitro or in vivo. Both afatinib and cetuximab were effective in tumor xenograft model. Afatinib is an effective agent in SCCHN especially in models with EGFR amplification

    Regulation of Tcf7l1 DNA Binding and Protein Stability as Principal Mechanisms of Wnt/β-Catenin Signaling

    Get PDF
    SummaryWnt/β-catenin signal transduction requires direct binding of β-catenin to Tcf/Lef proteins, an event that is classically associated with stimulating transcription by recruiting coactivators. This molecular cascade plays critical roles throughout embryonic development and normal postnatal life by affecting stem cell characteristics and tumor formation. Here, we show that this pathway utilizes a fundamentally different mechanism to regulate Tcf7l1 (formerly named Tcf3) activity. β-catenin inactivates Tcf7l1 without a switch to a coactivator complex by removing it from DNA, which leads to Tcf7l1 protein degradation. Mouse genetic experiments demonstrate that Tcf7l1 inactivation is the only required effect of the Tcf7l1-β-catenin interaction. Given the expression of Tcf7l1 in pluripotent embryonic and adult stem cells, as well as in poorly differentiated breast cancer, these findings provide mechanistic insights into the regulation of pluripotency and the role of Wnt/β-catenin in breast cancer

    Phenotypic evaluation of the basal-like subtype of invasive breast carcinoma

    Get PDF
    Microarray profiling of invasive breast carcinomas has identified five distinct subtypes of tumors (luminal A, luminal B, normal breast-like, HER2 overexpressing, and basal-like) that are associated with different clinical outcomes. The basal-like subtype is associated with poor clinical outcomes and is the subtype observed in BRCA1-related breast cancers. The aim of this study was to characterize the histologic and immunophenotypic properties of breast basal-like carcinomas that were first positively identified using DNA microarray analysis. Detailed histologic review was performed on 56 tumors with known microarray profiles (23 basal-like, 23 luminal, and 12 HER2+). Immunohistochemistry for estrogen receptor (ER), HER2, EGFR, smooth muscle actin (SMA), p63, CD10, cytokeratin 5/6, cytokeratin 8/18, and vimentin was performed on 18 basal-like, 16 luminal, and 12 HER2+ tumors. The basal-like tumors were grade 3 ductal/NOS (21/23) or metaplastic (2/23) carcinomas that frequently showed geographic necrosis (17/23), a pushing border of invasion (14/23), and a stromal lymphocytic response (13/23). Most basal-like tumors showed immunoreactivity for vimentin (17/18), luminal cytokeratin 8/18 (15/18), EGFR (13/18), and cytokeratin 5/6 (11/18), while positivity for the myoepithelial markers SMA (4/18), p63 (4/18) and CD10 (2/18) was infrequent. All basal-like tumors tested were ER− and HER2−. Morphologic features significantly associated with the basal-like subtype included markedly elevated mitotic count (P less than 0.0001), geographic tumor necrosis (P=0.0003), pushing margin of invasion (P=0.0001), and stromal lymphocytic response (P=0.01). The most consistent immunophenotype seen in the basal-like tumors was negativity for ER and HER2, and positivity for vimentin, EGFR, cytokeratin 8/18, and cytokeratin 5/6. The infrequent expression of myoepithelial markers in basal-like carcinomas does not support a direct myoepithelial cell derivation of these tumors. These findings should further assist in the identification of basal-like carcinomas in clinical specimens, facilitating treatment and epidemiologic studies of this tumor subtype

    A compact VEGF signature associated with distant metastases and poor outcomes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tumor metastases pose the greatest threat to a patient's survival, and thus, understanding the biology of disseminated cancer cells is critical for developing effective therapies.</p> <p>Methods</p> <p>Microarrays and immunohistochemistry were used to analyze primary breast tumors, regional (lymph node) metastases, and distant metastases in order to identify biological features associated with distant metastases.</p> <p>Results</p> <p>When compared with each other, primary tumors and regional metastases showed statistically indistinguishable gene expression patterns. Supervised analyses comparing patients with distant metastases versus primary tumors or regional metastases showed that the distant metastases were distinct and distinguished by the lack of expression of fibroblast/mesenchymal genes, and by the high expression of a 13-gene profile (that is, the 'vascular endothelial growth factor (VEGF) profile') that included <it>VEGF, ANGPTL4, ADM </it>and the monocarboxylic acid transporter <it>SLC16A3</it>. At least 8 out of 13 of these genes contained HIF1α binding sites, many are known to be HIF1α-regulated, and expression of the VEGF profile correlated with HIF1α IHC positivity. The VEGF profile also showed prognostic significance on tests of sets of patients with breast and lung cancer and glioblastomas, and was an independent predictor of outcomes in primary breast cancers when tested in models that contained other prognostic gene expression profiles and clinical variables.</p> <p>Conclusion</p> <p>These data identify a compact <it>in vivo </it>hypoxia signature that tends to be present in distant metastasis samples, and which portends a poor outcome in multiple tumor types.</p> <p>This signature suggests that the response to hypoxia includes the ability to promote new blood and lymphatic vessel formation, and that the dual targeting of multiple cell types and pathways will be needed to prevent metastatic spread.</p

    Endothelial-like properties of claudin-low breast cancer cells promote tumor vascular permeability and metastasis

    Get PDF
    The vasculature serves as the main conduit for breast tumor metastases and is a target of therapeutics in many tumor types. In this study, we aimed to determine if tumor-associated vascular properties could help to explain the differences observed in metastagenicity across the intrinsic subtypes of human breast tumors. Analysis of gene expression signatures from more than 3,000 human breast tumors found that genomic programs that measured vascular quantity, vascular proliferation, and a VEGF/Hypoxia-signature were the most highly expressed in claudin-low and basal-like tumors. The majority of the vascular gene signatures added metastasis-predictive information to immunohistochemistry-defined microvessel density scores and genomically defined-intrinsic subtype classification. Interestingly, pure claudin-low cell lines, and subsets of claudin-low-like cells within established basal-like cancer cell lines, exhibited endothelial/tube-like morphology when cultured on Matrigel. In vivo xenografts found that claudin-low tumors, but not luminal tumors, extensively perfused injected contrast agent through paracellular spaces and non-vascular tumor-lined channels. Taken together, the endothelial-like characteristics of the cancer cells, combined with both the amount and the physiologic state of the vasculature contribute to breast cancer metastatic progression. We hypothesize that the genetic signatures we have identified highlight patients that should respond most favorably to anti-vascular agents

    Endothelial-like properties of claudin-low breast cancer cells promote tumor vascular permeability and metastasis

    Get PDF
    The vasculature serves as the main conduit for breast tumor metastases and is a target of therapeutics in many tumor types. In this study, we aimed to determine if tumor-associated vascular properties could help to explain the differences observed in metastagenicity across the intrinsic subtypes of human breast tumors. Analysis of gene expression signatures from more than 3,000 human breast tumors found that genomic programs that measured vascular quantity, vascular proliferation, and a VEGF/Hypoxia-signature were the most highly expressed in claudin-low and basal-like tumors. The majority of the vascular gene signatures added metastasis-predictive information to immunohistochemistry-defined microvessel density scores and genomically defined-intrinsic subtype classification. Interestingly, pure claudin-low cell lines, and subsets of claudin-low-like cells within established basal-like cancer cell lines, exhibited endothelial/tube-like morphology when cultured on Matrigel. In vivo xenografts found that claudin-low tumors, but not luminal tumors, extensively perfused injected contrast agent through paracellular spaces and non-vascular tumor-lined channels. Taken together, the endothelial-like characteristics of the cancer cells, combined with both the amount and the physiologic state of the vasculature contribute to breast cancer metastatic progression. We hypothesize that the genetic signatures we have identified highlight patients that should respond most favorably to anti-vascular agents.Electronic supplementary materialThe online version of this article (doi:10.1007/s10585-013-9607-4) contains supplementary material, which is available to authorized users
    corecore