35 research outputs found

    Star Formation in Ring Galaxies

    Get PDF
    Ring galaxies are specific types of interacting galaxies in which a smaller galaxy has passed through the center of the disk of another larger galaxy. The intrusion of the smaller galaxy causes the structure of the larger galaxy to compress as the smaller galaxy falls through, and to recoil back after the smaller galaxy passes through, hence the ring-like shape. In our research, we studied the star-forming regions of a sample of ring galaxies and compared to those of other interacting galaxies and normal galaxies. Using UV, optical, and IR archived images in twelve wavelengths from three telescopes, we analyzed samples of star-forming regions in ring and normal spiral galaxies using photometry. To measure the star formation rates of the star forming regions, we used computer software that picked out the regions and measured their luminosities in all twelve wavelengths, before comparing the luminosities in these wavelengths to determine the rate of star formation. We have determined that ring galaxies have proportionally more clumps with higher star formation rates than spirals, and a similar trend was suggested when comparing ring galaxies to other interacting galaxies (though more data is required for that comparison). These findings can help us understand galaxy evolution, including the evolution of our own galaxy

    A Comparative Study of Knots of Star Formation in Interacting vs. Spiral Galaxies

    Full text link
    Interacting galaxies are known to have higher global rates of star formation on average than normal galaxies, relative to their stellar masses. Using UV and IR photometry combined with new and published H-alpha images, we have compared the star formation rates of ~700 star forming complexes in 46 nearby interacting galaxy pairs with those of regions in 39 normal spiral galaxies. The interacting galaxies have proportionally more regions with high star formation rates than the spirals. The most extreme regions in the interacting systems lie at the intersections of spiral/tidal structures, where gas is expected to pile up and trigger star formation. Published Hubble Telescope images show unusually large and luminous star clusters in the highest luminosity regions. The star formation rates of the clumps correlate with measures of the dust attenuation, consistent with the idea that regions with more interstellar gas have more star formation. For the clumps with the highest star formation rates, the apparent dust attenuation is consistent with the Calzetti starburst dust attenuation law. This suggests that the high luminosity regions are dominated by a central group of young stars surrounded by a shell of clumpy interstellar gas. In contrast, the lower luminosity clumps are bright in the UV relative to H-alpha, suggesting either a high differential attenuation between the ionized gas and the stars, or a post-starburst population bright in the UV but faded in H-alpha. The fraction of the global light of the galaxies in the clumps is higher on average for the interacting galaxies than for the spirals. Thus the star forming regions in interacting galaxies are more luminous, dustier, or younger on average.Comment: Astronomical Journal, in pres

    Plasma-derived proteomic biomarkers in human leukocyte antigen-haploidentical or human leukocyte antigen-matched bone marrow transplantation using post-transplantation cyclophosphamide

    Get PDF
    Recent studies have suggested that plasma-derived proteins may be potential biomarkers relevant for graft-versus-host disease and/or non-relapse mortality occurring after allogeneic blood or marrow transplantation. However, none of these putative biomarkers have been assessed in patients treated either with human leukocyte antigen-haploidentical blood or marrow transplantation or with post-transplantation cyclophosphamide, which has been repeatedly associated with low rates of severe acute graft-versus-host disease, chronic graft-versus-host disease, and non-relapse mortality. We explored whether seven of these plasma-derived proteins, as measured by enzyme-linked immunosorbent assays, were predictive of clinical outcomes in post-transplantation cyclophosphamide-treated patients using plasma samples collected at serial predetermined timepoints from patients treated on prospective clinical studies of human leukocyte antigen-haploidentical (n=58; clinicaltrials.gov Identifier: 00796562) or human leukocyte antigen-matched-related or -unrelated (n=100; clinicaltrials.gov Identifiers: 00134017 and 00809276) T-cell-replete bone marrow transplantation. Day 30 levels of interleukin-2 receptor α, tumor necrosis factor receptor 1, serum STimulation-2 (IL1RL1 gene product), and regenerating islet-derived 3-α all had high areas under the curve of 0.74–0.97 for predicting non-relapse mortality occurrence by 3 months post-transplant in both the human leukocyte antigen-matched and human leukocyte antigen-haploidentical cohorts. In both cohorts, all four of these proteins were also predictive of subsequent non-relapse mortality occurring by 6, 9, or 12 months post-transplant and were significantly associated with non-relapse mortality in univariable analyses. Furthermore, day 30 elevations of interleukin-2 receptor α were associated with grade II–IV and III–IV acute graft-versus-host disease occurring after day 30 in both cohorts. These data confirm that plasma-derived proteins previously assessed in other transplantation platforms appear to retain prognostic and predictive utility in patients treated with post-transplantation cyclophosphamide

    JWST reveals a possible z∌11z \sim 11 galaxy merger in triply-lensed MACS0647−-JD

    Get PDF
    MACS0647−-JD is a triply-lensed z∌11z\sim11 galaxy originally discovered with the Hubble Space Telescope. Here we report new JWST imaging, which clearly resolves MACS0647−-JD as having two components that are either merging galaxies or stellar complexes within a single galaxy. Both are very small, with stellar masses ∌108 M⊙\sim10^8\,M_\odot and radii r<100 pcr<100\,\rm pc. The brighter larger component "A" is intrinsically very blue (ÎČ∌−2.6\beta\sim-2.6), likely due to very recent star formation and no dust, and is spatially extended with an effective radius ∌70 pc\sim70\,\rm pc. The smaller component "B" appears redder (ÎČ∌−2\beta\sim-2), likely because it is older (100−200 Myr100-200\,\rm Myr) with mild dust extinction (AV∌0.1 magA_V\sim0.1\,\rm mag), and a smaller radius ∌20 pc\sim20\,\rm pc. We identify galaxies with similar colors in a high-redshift simulation, finding their star formation histories to be out of phase. With an estimated stellar mass ratio of roughly 2:1 and physical projected separation ∌400 pc\sim400\,\rm pc, we may be witnessing a galaxy merger 400 million years after the Big Bang. We also identify a candidate companion galaxy C ∌3 kpc\sim3\,{\rm kpc} away, likely destined to merge with galaxies A and B. The combined light from galaxies A+B is magnified by factors of ∌\sim8, 5, and 2 in three lensed images JD1, 2, and 3 with F356W fluxes ∌322\sim322, 203203, 86 nJy86\,\rm nJy (AB mag 25.1, 25.6, 26.6). MACS0647−-JD is significantly brighter than other galaxies recently discovered at similar redshifts with JWST. Without magnification, it would have AB mag 27.3 (MUV=−20.4M_{UV}=-20.4). With a high confidence level, we obtain a photometric redshift of z=10.6±0.3z=10.6\pm0.3 based on photometry measured in 6 NIRCam filters spanning 1−5ÎŒm1-5\rm\mu m, out to 4300 A˚4300\,\r{A} rest-frame. JWST NIRSpec observations planned for January 2023 will deliver a spectroscopic redshift and a more detailed study of the physical properties of MACS0647−-JD.Comment: 27 pages, 14 figures, submitted to Natur

    The Science Performance of JWST as Characterized in Commissioning

    Full text link
    This paper characterizes the actual science performance of the James Webb Space Telescope (JWST), as determined from the six month commissioning period. We summarize the performance of the spacecraft, telescope, science instruments, and ground system, with an emphasis on differences from pre-launch expectations. Commissioning has made clear that JWST is fully capable of achieving the discoveries for which it was built. Moreover, almost across the board, the science performance of JWST is better than expected; in most cases, JWST will go deeper faster than expected. The telescope and instrument suite have demonstrated the sensitivity, stability, image quality, and spectral range that are necessary to transform our understanding of the cosmos through observations spanning from near-earth asteroids to the most distant galaxies.Comment: 5th version as accepted to PASP; 31 pages, 18 figures; https://iopscience.iop.org/article/10.1088/1538-3873/acb29

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    Group III-vacancies mediated disordering of intrinsic and n-type AlGaAs/GaAs superlattices

    No full text
    Thesis (Ph. D.)--University of Rochester. College of Engineering and Applied Science. Institute of Optics, 1993.The mechanisms of superlattice disordering, a useful technique for optoelectronic device fabrication and integration, have been investigated. Al-Ga interdiffusion coefficients in AlGaAs/GaAs superlattices were determined using photoluminescence spectroscopy (PLS) and secondary ion mass spectrometry (SIMS). Al-Ga interdiffusion in intrinsic AlGaAs heterostructures is mediated by second nearest-neighbor hopping of group III vacancies throughout the 700 to 1050 °C range and in both Ga- and As-rich annealing ambients. The predicted increase of two orders of magnitude in the Al-Ga interdiffusion coefficient with As pressure between the Ga- and As-rich solidus limits was observed. The depth profiles of AlGa interdiffusion are consistent with group III-vacancy diffusion between the crystal surface and bulk, and yielded a single, reasonable vacancy diffusion coefficient. The activation energy of interdiffusion agreed with that predicted for second nearest-neighbor hopping of vacancies based on theoretical estimates of vacancy formation and migration energies. Additionally, the annealing of silicon nitride encapsulated superlattices indicated very limited Al-Ga interdiffusion even with an As overpressure. This is attributed to the lack of group III vacancies. Conversely, silicon dioxide caps appeared to be very permeable. A quantitative test of the Fermi-level effect on Al-Ga interdiffusion in n-type superlattices was performed using PLS, SIMS, and C-V profiling. A significant variation was observed in the enhancement with annealing ambient in quantum wells that were Si-doped during growth. This attributed to electrical compensation and the As overpressure's effect on group III-vacancy formation at the crystal surface. The predicted Fermi-level enhancement of a factor of forty was observed only when neither excess Ga or As were included. Disordering by the indiffusion of a variety of group IV and VI donors was also investigated. An enhancement in Al-Ga interdiffusion was observed in each case with the disordering being attributed to group III vacancies. However, important differences have been observed in the interdiffusion characteristics induced by Si or Ge, and that by S or Se. Additionally, the depth profiles of deep levels associated with group III vacancy-donor complexes were obtained using cathodoluminescence
    corecore