86 research outputs found

    Patient-specific Monte Carlo-based organ dose estimates in spiral CT via optical 3D body scanning and adaptation of a voxelized phantom dataset: proof-of-principle

    Get PDF
    : Objective. We present a method for personalized organ dose estimates obtained before the CT exam, via 3D optical body scanning and Monte Carlo (MC) simulations.Approach. A voxelized phantom is derived by adapting a reference phantom to the body size and shape measured with a portable 3D optical scanner, which returns the 3D silhouette of the patient. This was used as an external rigid envelope for incorporating a tailored version of the internal body anatomy derived from a phantom dataset (National Cancer Institute, NIH, USA) matched for gender, age, weight, and height. The proof-of-principle was conducted on adult head phantoms. The Geant4 MC code provided estimates of the organ doses from 3D absorbed dose maps in voxelized body phantom.Main results. We applied this approach for head CT scanning using an anthropomorphic voxelized head phantom derived from 3D optical scans of mannequins. We compared the estimates of head organ doses with those provided by the NCICT3.0 software (NCI, NIH, USA). Head organ doses differed up to 38% using the proposed personalized estimate and MC code, with respect to corresponding estimates calculated for the standard (non-personalized) reference head phantom. Preliminary application of the MC code to chest CT scans is shown. Real-time pre-exam personalized CT dosimetry is envisaged with adoption of a GPU-based fast MC code.Significance. The developed procedure for personalized organ dose estimates before the CT exam, introduces a new approach for realistic description of size and shape of patients via voxelized phantoms specific for each patient

    Profibrotic Effects of Endothelin-1 on Fibroblasts Are Mediated by Aldosterone in Vitro: Relevance to the Pathogenesis and Therapy of Systemic Sclerosis and Pulmonary Arterial Hypertension

    Get PDF
    Endothelin-1 (ET-1) is a vasoactive and profibrotic peptide that plays a pivotal role in diseases such as systemic sclerosis (SSc) and pulmonary arterial hypertension (PAH), by inducing fibrosis and vascular remodeling. Such effects may be sustained by the induction of aldosterone production and reactive oxygen species (ROS). We have used fibroblasts obtained from skin of healthy donors and SSc patients and commercial fibroblasts from lung to evaluate whether ET-1 is able to stimulate ROS production directly or indirectly through aldosterone induction. We found that ET-1 receptors are present in all types of fibroblasts analyzed, whereas the expression of mineralocorticoid receptor (MCR) is lower in dermal fibroblasts from healthy donors (HDFs) compared to fibroblasts derived from lung (HPFs) or from skin of SSc patients (SScHDFs). ET-1 induces ROS production in HDFs and SScHDFs after 24 h of incubation involving its receptor B (ETB), whereas aldosterone exerts its effects after 40 min of incubation. Moreover, ROS production was inhibited by the pre-incubation of cells with MCR inhibitor. Our results indicate that ET-1 induces ROS indirectly through aldosterone production suggesting that aldosterone may play a pivotal role in the pathogenesis of SSc and PAH

    Increased platelet adhesion and thrombus formation in a mouse model of Alzheimer's disease

    Get PDF
    Vascular dysfunctions and Alzheimer's disease show significant similarities and overlaps. Cardiovascular risk factors (hypercholesterolemia, hypertension, obesity, atherosclerosis and diabetes) increase the risk of vascular dementia and Alzheimer's disease. Conversely, Alzheimer's patients have considerably increased predisposition of ischemic and hemorrhagic strokes. Platelets are major players in haemostasis and thrombosis and are involved in inflammation. We have investigated morphology and function of platelets in 3xTg-AD animals, a consolidate murine model for Alzheimer's disease. Platelets from aged 3xTg-AD mice are normal in number and glycoprotein expression, but adhere more avidly on matrices such as fibrillar collagen, von Willebrand factor, fibrinogen and amyloid peptides compared to platelets from age-matching wild type mice. 3xTg-AD washed platelets adherent to collagen also show increased phosphorylation of selected signaling proteins, including tyrosine kinase Pyk2, PI3 kinase effector Akt, p38MAP kinase and myosin light chain kinase, and increased ability to form thrombi under shear. In contrast, aggregation and integrin αIIbβ3 activation induced by several agonists in 3xTg-AD mice are similar to wild type platelets. These results demonstrated that Alzheimer's mutations result in a significant hyper-activated state of circulating platelets, evident with the progression of the disease

    Outstanding effects on antithrombin activity of modified TBA diastereomers containing an optically pure acyclic nucleotide analogue

    Get PDF
    Herein, we report optically pure modified acyclic nucleosides as ideal probes for aptamer modification. These new monomers offer unique advantages in exploring the role played in thrombin inhibition by a single residue modification at key positions of the TBA structure

    Range margin reduction in carbon ion therapy: potential benefits of using radioactive ion beams

    Full text link
    Radiotherapy with heavy ions, in particular, 12C beams, is one of the most advanced forms of cancer treatment. Sharp dose gradients and high biological effectiveness in the target region make them an ideal tool to treat deep-seated and radioresistant tumors, however, at the same time, sensitive to small errors in the range prediction. Safety margins are added to the tumor volume to mitigate these uncertainties and ensure its uniform coverage, but during the irradiation they lead to unavoidable damage to the surrounding healthy tissue. To fully exploit the benefits of a sharp Bragg peak, a large effort is put into establishing precise range verification methods for the so-called image-guided radiotherapy. Despite positron emission tomography being widely in use for this purpose in 12C ion therapy, the low count rates, biological washout, and broad shape of the activity distribution still limit its precision to a few millimeters. Instead, radioactive beams used directly for treatment would yield an improved signal and a closer match with the dose fall-off, potentially enabling precise in vivo beam range monitoring. We have performed a treatment planning study to estimate the possible impact of the reduced range uncertainties, enabled by radioactive 11C beams treatments, on sparing critical organs in the tumor proximity. We demonstrate that (i) annihilation maps for 11C ions can in principle reflect even millimeter shifts in dose distributions in the patient, (ii) outcomes of treatment planning with 11C beams are significantly improved in terms of meeting the constraints for the organs at risk compared to 12C plans, and (iii) less severe toxicities for serial and parallel critical organs can be expected following 11C treatment with reduced range uncertainties, compared to 12C treatments

    Skin Cancer Diagnosis With Reflectance Confocal Microscopy: Reproducibility of Feature Recognition and Accuracy of Diagnosis

    Get PDF
    IMPORTANCE: Reflectance confocal microscopy (RCM) studies have been performed to identify criteria for diagnosis of skin neoplasms. However, RCM-based diagnosis is operator dependent. Hence, reproducibility of RCM criteria needs to be tested. OBJECTIVE: To test interobserver reproducibility of recognition of previously published RCM descriptors and accuracy of RCM-based skin cancer diagnosis. DESIGN, SETTING, AND PARTICIPANTS: Observational retrospective web-based study of a set of RCM images collected at a tertiary academic medical center. Nine dermatologists (6 of whom had ≥3 years of RCM experience) from 6 countries evaluated an RCM study set from 100 biopsy-proven lesions, including 55 melanocytic nevi, 20 melanomas, 15 basal cell carcinomas, 7 solar lentigines or seborrheic keratoses, and 3 actinic keratoses. Between June 15, 2010, and October 21, 2010, participanting dermatologists, blinded to histopathological diagnosis, evaluated 3 RCM mosaic images per lesion for the presence of predefined RCM descriptors. MAIN OUTCOMES AND MEASURES: The main outcome was identification of RCM descriptors with fair to good interrater agreement (κ statistic, ≥0.3) and independent correlation with malignant vs benign diagnosis on discriminant analysis. Additional measures included sensitivity and specificity for diagnosis of malignant vs benign for each evaluator, for majority diagnosis (rendered by ≥5 of 9 evaluators), and for experienced vs recent RCM users. RESULTS: Eight RCM descriptors showed fair to good reproducibility and were independently associated with a specific diagnosis. Of these, the presence of pagetoid cells, atypical cells at the dermal-epidermal junction, and irregular epidermal architecture were associated with melanoma. Aspecific junctional pattern, basaloid cords, and ulceration were associated with basal cell carcinomas. Ringed junctional pattern and dermal nests were associated with nevi. The mean sensitivity for the group of evaluators was 88.9% (range, 82.9%-100%), and the mean specificity was 79.3% (range, 69.2%-90.8%). Majority diagnosis showed sensitivity of 100% and specificity of 80.0%. Sensitivity was higher for experienced vs recent RCM users (91.0% vs. 84.8%), but specificity was similar (80.0% vs. 77.9%). CONCLUSIONS AND RELEVANCE: The study highlights key RCM diagnostic criteria for melanoma and basal cell carcinoma that are reproducibly recognized among RCM users. Diagnostic accuracy increases with experience. The higher accuracy of majority diagnosis suggests that there is intrinsically more diagnostic information in RCM images than is currently used by individual evaluators

    Allergic sensitization to common pets (cats/dogs) according to different possible modalities of exposure: an Italian Multicenter Study

    Get PDF
    Background: The query "are there animals at home?" is usually administered for collecting information on anamnesis. This modality to consider exposure to pet allergens constitutes a potential bias in epidemiological studies and in clinical practice. The aim of our study was to evaluate/quantify different modalities of exposure to cat/dog in inducing allergic sensitization. Methods: Thirty Italian Allergy units participated in this study. Each centre was required to collect the data of at least 20 consecutive outpatients sensitized to cat/dog allergens. A standardized form reported all demographic data and a particular attention was paid in relieving possible modalities of exposure to cat/dog. Results: A total 723 patients sensitized to cat/dog were recorded, 359 (49.65%) reported direct pet contact, 213 patients (29.46%) were pet owners, and 146 subjects (20.19%) were exposed to pets in other settings. Other patients were sensitized by previous pet ownership (150-20.75%) or indirect contact (103-14.25%), in 111 subjects (15.35%) any contact was reported. Conclusions: Only 213 patients (29.46%) would be classified as "exposed to animals" and 510 (70.54%) as "not exposed" according to usual query. Our classification has shown that many "not-exposed" subjects (399-55.19%) were "really exposed". The magnitude of exposure to pet allergens at home is not related exclusively to pet ownership. These considerations should be taken into account during the planning of epidemiological studies and in clinical practice for the management of pet allergic individuals

    Intragenic DNA methylation prevents spurious transcription initiation.

    Get PDF
    In mammals, DNA methylation occurs mainly at CpG dinucleotides. Methylation of the promoter suppresses gene expression, but the functional role of gene-body DNA methylation in highly expressed genes has yet to be clarified. Here we show that, in mouse embryonic stem cells, Dnmt3b-dependent intragenic DNA methylation protects the gene body from spurious RNA polymerase II entry and cryptic transcription initiation. Using different genome-wide approaches, we demonstrate that this Dnmt3b function is dependent on its enzymatic activity and recruitment to the gene body by H3K36me3. Furthermore, the spurious transcripts can either be degraded by the RNA exosome complex or capped, polyadenylated, and delivered to the ribosome to produce aberrant proteins. Elongating RNA polymerase II therefore triggers an epigenetic crosstalk mechanism that involves SetD2, H3K36me3, Dnmt3b and DNA methylation to ensure the fidelity of gene transcription initiation, with implications for intragenic hypomethylation in cance
    • …
    corecore