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HIGHLIGHTS 

 Platelets are involved in vascular dysfunctions and Alzheimer’s disease 

 Platelet adhesion is increased in 3xTg-AD, a well consolidated mouse model of Alzheimer’s disease 

 Thrombus formation is also accelerated in 3xTg-AD 

 Alzheimer’s mutations result in a significant hyper-activated state of circulating platelets 

*Highlights (for review)



ABSTRACT 

Vascular dysfunctions and Alzheimer’s disease show significant similarities and overlaps. Cardiovascular risk 

factors (hypercholesterolemia, hypertension, obesity, atherosclerosis and diabetes) increase the risk of 

vascular dementia and Alzheimer’s disease. Conversely, Alzheimer’s patients have considerably increased 

predisposition of ischemic and hemorrhagic strokes. Platelets are major players in haemostasis and 

thrombosis and are involved in inflammation. We have investigated morphology and function of platelets in 

3xTg-AD animals, a consolidate murine model for Alzheimer’s disease. Platelets from aged 3xTg-AD mice 

are normal in number and glycoprotein expression, but adhere more avidly on matrices such as fibrillar 

collagen, von Willebrand factor, fibrinogen and amyloid peptides compared to platelets from age-matching 

wild type mice. 3xTg-AD platelets adherent to collagen also show increased phosphorylation of selected 

signaling proteins, including tyrosine kinase Pyk2, PI3 kinase substrate Akt, p38MAP kinase and myosin light 

chain kinase, and increased ability to form thrombi under shear. In contrast, aggregation and integrin 

IIb3 activation induced by several agonists in 3xTg-AD mice are similar to wild type platelets. These 

results demonstrated that Alzheimer’s mutations result in a significant hyper-activated state of circulating 

platelets, evident with the progression of the disease.  

 

*Abstract
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1. INTRODUCTION 

 Alzheimer’s disease (AD) is the most invalidating dementia in the elderly, affecting more than 45 

million people worldwide with tendency to rise with the aging of the population [1]. AD is characterized by 

abnormal deposition of short amyloid  peptides (A140 and A1-42) in the brain parenchyma and in the 

cerebral vessels. The latter is often correlated with cerebral amyloid angiopathy [2]. A peptides derive 

from the amyloidogenic metabolism of amyloid precursor protein APP by the actions of  and  secretases. 

Alternatively APP may be proteolysed by  and  secretases to release the non-toxic peptide p3 [3]. 

Another important feature of AD is the intracellular accumulation in neurons of the microtubule associated 

protein Tau, in its hyperphosphorylated form (neurofibrillar tangles) [4].  

 Although AD is prevalently known as a neurological disorder, it is now well accepted that it actually 

represents a systemic disease that affects peripheral tissues with alterations in blood cells and vessels. It 

has been demonstrated that AD is related to alterations of the vascular system and is associated to vascular 

disorders, including stroke, atherosclerosis and hypertension [5,6]. Conversely, many risk factors that 

predispose to vascular disorders may increase the risk for AD [7]. 

 Among peripheral cells, platelets, which are responsible for haemostasis and thrombosis, are the 

most likely link between vascular disorders and AD [8-10]. Platelets express high amount of APP and the 

secretases that are responsible for its metabolism store APP soluble fragments and A in -granules and 

release A in plasma upon platelet activation [11,12]. It is not clear whether A present in plasma derives 

exclusively from platelets or comes from the brain through the blood brain barrier (BBB), but it has been 

demonstrated that A is able to cross the BBB in pathological conditions [13,14]. A peptides in plasma 

stimulate platelet activation [15-17], promote ROS production [18], platelet adhesion and thrombus 

formation [16,18]. Accumulation of A in cerebral vessels also contributes to a chronic neuroinflammatory 

status that consecutively may exacerbate platelet activation and viceversa [19]. Platelets also express Tau 

and the presence of high molecular weight variants in AD patients has been suggested as a potential 

peripheral biomarker for AD [20,21].  

Abnormalities of platelet morphology and APP metabolism have been described in platelets from 

AD patients [22], in particular APP ratio is decreased in platelets from AD patients compared to age-

matched subjects [23,24]. Also, AD platelets show high level of activation in resting conditions, high P-

selectin expression and integrin IIb3 activation upon stimulation, high level of platelet/leukocytes 

aggregates and high number of pro-coagulant “coated platelets” [25-28]. Pre-activation of platelets has 

been observed also in a mouse model of AD, APP23 mice: platelets from aged APP23 mice show strongly 

enhanced integrin activation and degranulation. The hyperactivated state of platelets results in a pro-

coagulant phenotype that increases and worsens vascular inflammation and thrombosis [29].  

*Manuscript
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 Here, we analyzed platelet activation in the triple 3xTg (3xTg-AD) mice. These mice contain three 

mutations associated with familial AD (APP Swedish, Tau MAPT P1301L and preselinin1 PSEN1 M146V) that 

result in overexpression of APP, overproduction of A42 and hyperphosphorylation of Tau in neurons. 

Extracellular deposition of A is evident in 6 months and Tau pathology in 12 months [30]. Platelets from 

3xTg-AD mice show decreased platelet APP isoform, a situation that is commonly observed in AD platelets, 

and an increased level of soluble APP in plasma [31]. Moreover cerebrovasculature in 3xTg-AD mice shows 

markers of activation and overexpresses A, thrombin, tumor necrosis factor , interleukins 1 and 6 and 

MMP9 [19]. The activation state of platelets in 3xTg-AD mice has never been investigated. The current 

study explored platelet adhesion, activation and thrombus formation in >18 months 3xTg-AD mice 

compared to aged matched wild type control platelets.  

 

  



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

3 
 

2. MATERIALS AND METHODS 

2.1 Chemicals and reagents 

3xTg-AD mice were kindly provided by Dr. Dimtry Lim (University of Piemonte Orientale, Italy). 3xTg-AD 

mice were generated as described elsewhere [30]. The use of mice for our experimental work was 

approved by the Ethics Committee of the University of Pavia, according to the EU Directive 2010/63/EU for 

animal experiments. Thrombin, the thromboxane A2 analogue U46619, PGE1, apyrase, A25-35, bovine 

serum albumin, TRITC-conjugated phalloidin, fibrinogen and CFSE were purchased from Sigma-Aldrich. 

Bicinchoninic acid assay was from Thermo Fisher. Enhanced chemiluminescence (ECL) substrate was from 

Millipore. Convulxin was provided by Dr K. J. Clemetson (Theodore Kocher Institute, University of Berne, 

Switzerland). Collagen type I was kindly provided by Prof. M. E. Tira (University of Pavia, Italy). Von 

Willebrand factor (Koate) was from Bayer. Stromatol was from Mascia Brunelli. PE anti-Ly-6G/ly-6C(Gr-1), 

FITC anti-CD41 and PerCP anti-CD45 were from Biolegend. Anti-GPVI, anti-CD42b, anti-CD41 and anti-

CD49b conjugated antibodies for flow cytometry were from Emfret Analytics. FITC-fibrinogen was from 

Molecular Probes. The monoclonal anti-tubulin (DM1A) was from Santa Cruz Biotechnology. Antibodies 

against APP: 22C11 were from Chemicon, and 6E10 from Covance. Anti-phospho Pyk2(Y402), anti-phospho 

Akt(S473), anti-phospho p38MAPK(T180-Y182) and anti-phospho MLC(S19) were from Cell Signaling 

Technology. 

 

2.2 Platelet preparation 

Murine platelets were prepared as previously described [10] from blood collected from the abdominal vena 

cava of anesthetized animals in syringes containing ACD/3.8% sodium citrate (2:1) as anticoagulant. Briefly, 

anticoagulated blood was diluted with HEPES buffer (10mM HEPES, 137mM NaCl, 2.9mM KCl, 12mM 

NaHCO3, pH 7.4) and centrifuged for 10 minutes at 180g to obtain platelet-rich-plasma (PRP). PRP was then 

transferred to new tubes and the remaining red blood cells were diluted with HEPES buffer and centrifuged 

again at 180g for 7 minutes. The upper phase was added to the previously collected PRP and 0.02 U/mL 

apyrase, and 1M PGE1 were added before centrifugation at 550g for 10 minutes. The supernatant 

platelet-poor plasma was removed and the platelet pellet was washed in PIPES buffer (20mM PIPES, 

136mM NaCl, pH 6.5) and centrifuged at 720g for 15 minutes. Platelet pellet was finally gently resuspended 

in 500L of HEPES buffer, platelets were counted and the platelet count was adjusted to 5×108/ml. Upon 

addition of 5.5 mM glucose, cells were allowed to rest for 30 min at room temperature.  

For aggregation studies, washed platelets from WT and 3xTg-AD mice (0.25 ml, 2×108 platelets/ml) were 

stimulated under constant stirring with 0.05U/ml and 0.1U/ml thrombin, 50ng/ml convulxin and 1M 

U46619 in the presence of 1mM calcium in a Chronolog Aggregometer (Mascia Brunelli). Platelet 

aggregation was monitored continuously over 5 minutes. 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

4 
 

 

2.3 Preparation and extraction of brain tissue 

Brain was dissected from euthanized mouse and homogenized in 1 mL of ice-cold RIPA buffer (50mM 

Tris/HCl, pH 7.4, 200mM NaCl, 2.5mM MgCl2, 1% Nonidet P-40, 10% glycerol, 2mM PMSF, 100g/ml 

leupeptin, 100g/ml aprotinin, 2mM NaF, 2mM Na3VO4, pH 7.4) for 4 hours at 4°C. After homogenization, 

lysates were cleared at 18000g for 10 minutes at 4°C to eliminate debris and insoluble materials. 

Supernatants were collected and protein concentration was determined by bicinchoninic acid assay.  

 

2.4 Flow cytometry 

Flow cytometry experiments were performed essentially as described [32]. Samples of washed platelets 

(106 cells in 0.05 mL of HEPES buffer containing 0.1mM CaCl2, 1mM MgCl2, 5.5 mM Glucose and 0.1% BSA), 

untreated or stimulated with different doses of TRAP4, convulxin, U46619, ADP or A25-35 were labelled for 

30 minutes at room temperature with FITC-conjugated fibrinogen. Surface expression of different 

glycoproteins on WT and 3xTg-AD mice were determined using specific antibodies: glycoprotein VI, CD42b, 

CD41 and CD49b. The reaction was stopped with PFA 0.5% and samples were analyzed by flow cytometry 

using a FACSCalibur instrument equipped with CellQuest Pro software (BD Biosciences). Data analyses were 

performed using the FlowJo Version 7.6.1 software (TreeStar). 

 

2.5 Adhesion and spreading assay 

Glass coverslips were coated overnight at room temperature with 100g/ml fibrinogen, 25g/ml collagen, 

10g/ml koate or 10M A25-35, and then blocked with 1% BSA for 2h at room temperature. Washed 

platelets (0.5 ml; 4 x107 cells/ml) were added to dishes coated with fibrinogen and Ain the presence of 

1mM CaCl2, collagen in the presence of 2mM MgCl2, and vWF in the presence of the cofactor botrocetin. 

Non adherent cells were discharged, and adherent platelets were fixed, permeabilized with Triton X-100, 

and actin filaments were stained by TRITC-conjugated phalloidin, as previously described [33]. Platelets 

were viewed on a fluorescence microscope (Olympus BX51), and digital images (400X) were acquired. The 

number of adherent cells was determined using the ImageJ Version 1.42 software.  

2.6 Analysis of signaling in adherent platelets  

Polystyrene dishes (60-mm) were coated overnight at room temperature with 25g/ml fibrillar collagen. 

Dishes were washed three times with 2.5 mL of PBS, blocked with 2 mL 1% BSA for 2 hour at room 

temperature, and then washed again three times with PBS. Murine platelets (0.5 ml; 0.5 x109 cells/ml) were 

added to collagen-coated dishes in the presence of 2 mM MgCl2 and 1 mg/mL BSA. After 60 min of 

incubation at room temperature, non-adherent cells were removed and dishes were washed three times 

with 2.5mL of PBS. For whole cell lysate preparation, adherent cells were directly solubilized by the addition 
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of 0.3 mL of 2% SDS in HEPES buffer, and then collected. Lysates were centrifuged at 18000g for 10 minutes 

and protein concentration was determined by bicinchoninic acid assay. Aliquots of each sample containing 

the same amount of proteins were used for immunoblotting analysis. 

 

2.7 Electrophoresis and immunoblotting 

Aliquots of platelet and brain lysates containing the same amount of proteins (15 g and 150g 

respectively) were separated by SDS–PAGE, and proteins were transferred to PVDF membrane. After 

blocking for 1 h with 5% BSA in TBS (20mM Tris/HCl, pH 7.5, 0.5mM NaCl), membrane was incubated 

overnight at 4°C with the desired primary antibody. In the present study the following antibodies and 

dilution were used: anti-APP (6E10), 1:1000; anti-APP(22C11), 1:1000; and anti-tubulin (DM1A), 1:2500; 

anti-phosphoPyk2 (Y402), 1:1000; anti-phosphop38MAPK(T180Y182) 1:1000; anti-phosphoMLC(S19), 

1:1000; anti-phosphoAkt(Ser473)1:1000. Membrane was then extensively washed with 0.1%Tween20 in 

PBS and incubated with peroxidase-conjugated secondary antibody (1:2000) for 45 minutes. Upon 

extensively washing, reactive proteins were visualized with a chemiluminescence reaction, in a Chemidoc 

XRS (Biorad). Blots reported in the figures are representative images and the analysis of band intensity was 

performed by computer assisted densitometric scanning using Image J software. 

 

2.8 Thrombus formation under flow 

Thrombus formation was performed as previously described [34] with some modification. Briefly, glass 

coverslips were coated with fibrillar type I collagen (50g/ml) and blocked with 1% BSA. Coverslips were 

mounted in a 50-m-deep parallel-plate flow chamber (RC-31 from Warner instruments) under a 

fluorescence microscope, and rinsed with washing buffer (HEPES buffer supplemented with 2mM CaCl2, 

2mM MgCl2, 5.5mM glucose, 0.1% BSA and 1U/ml of heparin). Blood was withdrawn by euthanized mice in 

PPACK/heparin, preincubated with 3 g/ml CFSE for 15 minutes in the dark, and flowed over collagen at 

1000/s for 5 minutes using a pump system (Harvard Apparatus PHD 2000). After perfusion the flow 

chamber was rinsed with washing buffer, and at least 10 fluorescence microscopic images were collected 

after 5 minutes of rinse. Images were analyzed by ImageJ Version 1.92 software and the extent of thrombus 

formation was calculated as the percentage of platelet covered area. 

 

2.9 Data and statistical analysis 

All of the reported figures are representative of at least 3 different experiments. Statistical analysis was 

performed using Prism Version 4 software(GraphPad) and data were compared by unpaired t test (media ± 

SEM). 
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3. RESULTS 

 

3.1 Normal platelet count and glycoprotein expression in 3xTg-AD platelets 

 3xTg-AD mice represent a well-characterized AD model expressing mutations on human APP, Tau 

and presenilin1 associated with the familial AD. Transgenes are integrated at a single locus under the 

control of the neuronal Thy1.2 promoter, therefore their expression is restricted to the central nervous 

system. Since in this mouse model A accumulates not only in brain but also in cerebral vessel walls [19] 

and in plasma [35], we verify the expression of amyloid precursor protein APP in brain tissue as well as in 

circulating platelets. We use two different antibodies: mAb 6E10 recognizes human APP and therefore is 

able to discriminate the transgenic human APP inserted under neuronal promoter; mAb 22C11 recognizes 

human and murine APP. As expected, immunoblotting analysis with mAb 6E10 reveals the presence of 

human APP in brain but not in platelet lysates of 3xTg-AD mice, confirming the specific neuronal expression 

of human APP in our transgenic model. Human platelets have been used as positive control: the slightly 

differences in the molecular weight of APP is due to different APP isoforms expressed in brain (mainly 

APP695) and platelets (mainly APP751/770). Immunoblotting with mAb 22C11 clearly shows that the level 

of expression of APP in brain of 3xTg-AD is two/three fold higher than in control WT mice, according to APP 

Swedish mutation [30]. On the contrary the level of expression of murine APP in platelets is normal and 

similar in WT and 3xTg-AD mice (figure 1A).  

Although this mouse model have been widely use to investigate neuronal dysfunctions, little information is 

available on the consequences of these mutations on circulating blood cells, including platelets. Platelets 

express high level of APP [36]. We demonstrated that platelet and white blood cell number in 3xTg-AD mice 

are normal compared to WT (figure 1B and C). We next examined platelets for the surface expression of 

glycoprotein Ib(CD42b), the immunoreceptor tyrosine-based activation motif (ITAM)–coupled collagen 

receptor GPVI, 2 (CD49b) and IIb (CD41) integrins demonstrating no significant differences in 

glycoprotein expression between the two genotypes (figure 1D).  

3.2 Activation and aggregation is normal in 3xTg-AD platelets 

 It has been previously demonstrated that platelets isolated from AD patients and AD transgenic 

mice (APP23) are in a pre-activated state and more prone to activation. Here, we analyzed the ability of 

3xTg-AD platelets to be activated by different agonists in comparison to WT control platelets. We 

demonstrated that aggregation is not altered in 3xTg-AD platelets stimulated with the thrombin receptor 

activated peptide TRAP4, GPVI agonist convulxin, thromboxane analogue U46619 and A peptides (figure 

2A). Consistent with these results, integrin IIb3 inside-out activation, measured as the ability of integrin to 
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bind fibrinogen, is similar in stimulated 3xTg-AD compared to WT platelets (figure 2B). We also studied 

granule secretion (analyzed as the % of platelets that expressed P-selectin on their surface) upon 

stimulation with different agonists, and demonstrated no significant differences between WT and 3xTg-AD 

mice (figure 2C).  

3.3 Enhanced platelet adhesion and thrombus formation in 3xTg-AD mice 

Platelet are able to adhere with different kinetics on physiological subendothelial matrices, collagen and 

von Willebrand factor, and fibrinogen. We have also demonstrated that platelets are able to specifically 

adhere on different amyloid peptides (A25-35, A1-40 and A1-42) in static conditions [37], a situation that is 

likely to occur in cerebral vessels upon deposition of amyloid peptides. Here we analyzed the ability of 

platelets from WT and 3xTg-AD mice to adhere to collagen, von Willebrand factor, fibrinogen and A in 

static conditions (adhesion time: 60 minutes). Adherent platelets were visualized in immunofluorescence 

after staining of actin filaments with phalloidin-TRITC. We observed that platelet adhesion is significantly 

increased in 3xTg-AD compared to control WT over all the substrates tested (figure 3A). The 3xTg-AD 

enhanced adhesion was also evident and significant at early time points (30 minutes) (supplementary data 

1). In contrast, no differences in spreading were observed (data not shown). In order to evaluate whether 

adhesion results in active signalling in adherent platelets, we analyzed phosphorylation of selected 

signalling proteins in WT and 3xTg-AD platelets adherent to collagen. Phosphorylation of the focal adhesion 

kinase Pyk2, the PI3K substrates Akt, p38 MAPK, and myosin light chain (MLC) were analyzed using specific 

phospho-antibodies following 60 minutes of platelet adhesion to collagen. We observed increased 

phosphorylation of Pyk2 (Y402), Akt (S473), p38 MAPK (T180-Y182) and MLC (S18) in response to collagen 

adhesion in 3xTg-AD platelets compared to WT (figure 3B). 

The enhanced ability of isolated 3xTg-AD platelets to adhere to collagen was also tested under flow 

conditions. Fluorescently labelled platelets in whole blood from WT and 3xTg-AD mice were perfused for 5 

minutes at a shear rate of 1000/second over immobilized fibrillar collagen and thrombus formation was 

evaluated as percentage of area covered by adherent platelets. Figure 4 shows that platelet adhesion and 

thrombus formation on collagen-coated surface are significantly increased in 3xTg-AD compared to WT 

control platelets (figure 4A, B). 
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4. DISCUSSION 

 AD is a complex neuropathology that predominantly affects neurons and brain but also has a 

significant impact on peripheral tissues [38]. Accumulation of A peptides in senile plaques in the brain is 

correlated with dementia and neuronal death. A peptides also accumulate in cerebral vessel walls causing 

cerebral amyloid angiopathy [2]. In pathological conditions A peptides may cross the BBB [13] and soluble 

or fibrillar Apeptides may activate circulating blood cells and endothelial cells [10]. We and others have 

demonstrated that A peptides potentiate platelet activation induced by several agonists [15] and directly 

activate platelets, promoting release of intracellular granules content [16-18]. Platelet degranulation 

releases a small amount of platelet-derived A peptides and inflammatory markers. Platelet-derived A 

peptides in turn increase local A concentration in plasma and activate neutrophils and endothelial cells, 

causing a chronic inflammatory state. It has been show that vascular activation is a relevant mechanism in 

AD pathogenesis [19]. Accordingly, AD patients show enhanced platelet activation and chronic 

inflammation that exacerbate peripheral tissue activation [25,27]. The chronic inflammation state has also 

been described in a murine model of AD, 3xTg-AD mice [19].  

 In this study we have analyzed morphology and function of platelets from aged 3xTg-AD mice (age 

> 18 month). We have demonstrated that 3xTg-AD platelets show enhance ability to adhere to components 

of the subendothelial matrix, such as collagen, von Willebrand factor and fibrinogen. Adhesion is the first 

step in platelet activation, and we have here demonstrated that 3xTg-AD platelets adherent to collagen 

activates intracellular signaling pathways. In particular, we observed that 3xTg-AD platelets adherent to 

collagen show a significant phosphorylation of selected signaling proteins, the tyrosine kinase Pyk2, the Akt 

kinase, which is activated downstream of PI3K, the mitogen activated kinase p38MAPK, and the myosin 

light chain kinase MLC, compared to WT adherent platelets. We have also demonstrated that 3xTg-AD 

platelets have an increase capacity to adhere over collagen under shear (1000/sec) and to form 

microthrombi. These results are in line with the observation by Jarre et al. that have demonstrated that 

APP23 transgenic mice that express human APP Swedish mutation (KM670/671NL) and overexpress APP in 

the nervous system show a prothrombotic phenotype in vivo, accompanied by shortened tail bleeding time 

and altered hemostasis [29]. Our results demonstrated that the hyperactivation state of circulating 

platelets is also detectable in the 3xTg-AD mice. However, in contrast to what observed in the APP23 mice, 

platelet from 3xTg-AD mice did not show any significant difference in aggregation, granule secretion and 

integrin activation in 3xTg-AD mice compared to WT. In contrast, major alterations of platelet function are 

related to their increased ability to adhere, become activated and form thrombi upon adhesion. Although 

these discrepancies may indicate that different mutations predisposing to AD may have peculiar 

consequence on platelet function, it cannot be excluded that they can be caused by different platelet 

preparation protocols affecting basal level of platelet activation.  
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 Either WT and 3xTg-AD platelets do not express human APP, as expected, and we have shown in 

this study that the level of murine APP is similar in the two genotypes. A peptides is increased in 3xTg-AD 

brain and cerebral vessels [30] and are also able to cross the BBB [13] suggesting that increased level of A 

peptides in brain may result in increased A plasma concentration. It has been recently demonstrated in 

3xTg-AD mice that A concentration in plasma during the first nine months  of the pathology directly 

correlates with the progression of AD [35].  

 Our study has demonstrated that platelets from 3xTg-AD mice have an increased ability to adhere 

to immobilized A peptides compare to platelets form control mice. Previously we have demonstrated that 

A is a potent platelet agonist [16]. Therefore it is possible to hypothesize that in the onset of AD the 

progressive accumulation of A in plasma may sensitize circulating platelets rendering them more prone to 

adhere to immobilized A itself as well as to other adhesive proteins, a process that favours thrombus 

formation. This process may increase the cardiovascular risk associated to AD. 

In conclusion our results indicate that blood platelets from 3xTg-AD mice are more susceptible to adhesion 

to subendothelial matrices and therefore may contribute to the vascular complications associated to the 

pathology. 
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FIGURE LEGENDS 

 

Figure 1. Characterization of platelets from 3xTg-AD mice. (A) APP expression in brain and platelet lysates 

from WT and 3xTg-AD mice was investigated in immunoblotting by using two different antibodies against 

APP: 6E10 recognizes human APP and 22C11 recognizes human and murine APP. Human platelet sample 

was loaded as positive control. Tubulin was used for equal loading control. (B,C) Platelets and white blood 

cells (WBC) count in whole blood from WT (white bars) and 3xTg-AD (black bars) mice. Results are the 

means ± SEM of determination performed in 10 different mice. (C) Surface expression of different 

glycoproteins on WT (white bars) and 3xTg-AD (black bars) mice determined by flow cytometric analysis 

with specific antibodies. Data are expressed as the mean fluorescence intensity ± SEM of 4 different 

experiments performed in duplicate. 

 

Figure 2. Aggregation, integrin IIb3 inside-out activation and P-selectin expression of 3xTg-AD platelets. 

(A) Washed platelets (2×108/ml) from WT and 3xTg-AD mice were stimulated in an aggregometer with 

thrombin (0.05 and 0.1 U/ml), convulxin (50ng/ml), U46619 (1M) and A25-35 (10 M). Aggregation was 

monitored as the increase of light transmission up to 5 minutes. Traces in the figure are representative of 

at least 3 different experiments. (B) Flow cytometric analysis of FITC-labeled fibrinogen binding to WT 

(white bars) and 3xTg-AD (black bars) platelets stimulated with 0.5 mM TRAP4, 50ng/ml convulxin (CVX), 5 

M U46619, 10 M ADP and 10 M A25-35. Data are expressed as means ± SEM of 3 different experiments. 

(C) P-selectin (CD62P) expression on platelet surface is analyzed in flow cytometry (PE) in resting and 

stimulated conditions (thrombin 0.1 U/ml; convulxin 50ng/ml; U46619 5 M + ADP 5 M; A25-35 10 M) in 

either WT (white bars) and 3xTg-AD (black bars) platelets.  

 

Figure 3. Adhesion and signaling of 3xTg-AD platelets. WT and 3xTg-AD platelets were let to adhere on 

glass coverlips coated with 25 g/ml collagen, 10 g/ml Koate (vWF), 100 g/ml fibrinogen or 10 M A, as 

described in methods for 60 minutes. Adherent platelets were fixed, permeabilized and stained with TRITC 

conjugated phalloidin. Representative images at 400X magnification of adherent platelets to the indicated 

substrates are reported. Quantification of platelets adhesion, evaluated as number of adherent 

platelets/mm2, is reported on the right. WT (white bar), 3xTg-AD (black bars), *** p<0.005 (B) (i)Aliquots of 

whole lysate from platelets adherent to collagen were analyzed by immunoblotting with the following 

antibodies: P-Pyk2 (Y402), P-Akt(S473), P-p38MAPK (T180/Y182), P-MLC(S18). Tubulin was used as equal 

loading control. (ii) Quantitative evaluation of protein phosphorylation is reported in the histograms as the 

means ± SEM of 3 different experiments. WT (white bars) and 3xTg-AD (black bars). ***P< 0.005. 
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Figure 4. Enhanced thrombus formation in 3xTg-AD. CSFE-labeled platelets in whole blood from wild-type 

(WT) and 3xTg-AD mice were perfused over immobilized fibrillar collagen at a shear rate of 1000/s for 5 

minutes. Images were taken after brief rinse of the coverslips with washing buffer (2 minutes) and are 

reported in (A). Thrombus formation on the coverslips was evaluated by measuring the covered area in 10 

different and randomly taken microscopic fields and results are reported in the histogram in (B) (WT, white 

bars; 3xTg-AD, black bars) as the means ± SEM of 3 different experiments.  
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