79 research outputs found

    Osteonecrosis of the Jaw After Bisphosphonates Treatment in Patients with Multiple Myeloma

    Get PDF
    Bone lytic lesion in Multiple myeloma are the most commonly presented symptoms which require treatment with bisphosphonates (BPs). BPs are providing supportive care, reducing the rate of skeletal morbidity but evidently not abolishing it, the criteria for stopping their administration have to be different from those used for classic antineoplastic drugs, and they should not be stopped when metastatic bone disease is progressing. Osteonecrosis of the jaw (ONJ) has been associated recently with the use of BPs. The aim of these study is to evaluate the incidence of ONJ in patients with MM treated with mixed biphosphonates. We analyzed total 296 myeloma patients (150 male and 146 female). Mostly effected age group with 58,1% is age more than 60 years up to 88 years, diagnosed in our institution in the period 2005-2015. We used intravenous or oral forms of biphosphonates such as pamidronate, ibandronate, clodronate and zolendronic acid. The patients were evaluated for ONJ. The incidence of ONJ in our group of patients treated with Bps was 4,6% from our group of 260 patients 87,8% received BPs therapy and patients which haven’t received BPs 12,2%. From this group, 95,4% (248) didn’t show ONJ, and 4,6% (12) showed ONJ. The period of this treatment with BPs is an important risk factor for development of ONJ, average duration of BPs therapy in patients which show adverse effects is 26.8±13.7 months, from the total number of 12 patients that developed ONJ adverse effects, we have 8 patients which received treatment with Zolendronic acid and the remaining 4 patients which were treated with other BPs combinations without Zolendronic acid. All patients treated for MM must continue with the therapy with Zolendronic acid and Pamidronate, each patient must be individually treated according to his response of the treatment (dose, frequency and duration of therapy)

    Pengaruh Kualitas Produk, Harga, Dan Saluran Distribusi Terhadap Loyalitas Pelanggan Majalah Swa Melalui Variabel Kepuasan Pelanggan (Studi Kasus Pada Pelanggan Majalah Swa Di DKI Jakarta)

    Full text link
    Customer loyalty is a goal that has to be achieved by a company. To be able to get loyal customers, SWA magazine needs to pay attention on the factors that influence customers\u27 loyalty. Moreover, business and economy themed magazines are mushrooming, leading to the opportunity for the readers to move from one magazine to another.This research aimed to ascertain the effect of product quality, price, and distribution channel on customer loyalty of SWA magazine in Jakarta through customer satisfaction variable both simultaneously and partially. The hypothesis was there was an effect of product quality, price, and distribution channel on customer loyalty of SWA magazine in Jakarta through customer satisfaction variable both simultaneously and partially. The type of this research was explanatory research with 97 respondents with multi stage sampling technique through questionnaire and interview. The data was analyzed using linear regression method with the assistance of SPSS 16.0.The result of this research showed that product quality, price and distribution channel variables had significant and positive effect partially on customer satisfaction. Product quality variable did not have partially significant effect on customer loyalty. Price and distribution channel variables had partially significant and positive effect on customer loyalty. Product quality and price variables had simultaneously positive and significant effect on customer satisfaction while distribution channel had simultaneously negative effect on customer satisfaction. Simultaneously, product quality, price, and distribution channel variables had positive effect and not significant effect on customer loyalty. Partially, customer satisfaction had positive and significant effect on customer loyalty.Based on the result of this research, a conclusion was drawn that customers\u27 perception on product quality, price, and distribution channel was good. Customers\u27 satisfaction and loyalty of SWA magazine were also good. The company was suggested to improving the product quality, adjusting the price and boosting the distribution channel of SWA magazine in accordance with customers\u27 needs and expectation, so that, customers can feel the satisfaction and decided to be loyal customers

    Table1_Genomic adaptation of Ethiopian indigenous cattle to high altitude.XLSX

    No full text
    The mountainous areas of Ethiopia represent one of the most extreme environmental challenges in Africa faced by humans and other inhabitants. Selection for high-altitude adaptation is expected to have imprinted the genomes of livestock living in these areas. Here we assess the genomic signatures of positive selection for high altitude adaptation in three cattle populations from the Ethiopian mountainous areas (Semien, Choke, and Bale mountains) compared to three Ethiopian lowland cattle populations (Afar, Ogaden, and Boran), using whole-genome resequencing and three genome scan approaches for signature of selection (iHS, XP-CLR, and PBS). We identified several candidate selection signature regions and several high-altitude adaptation genes. These include genes such as ITPR2, MB, and ARNT previously reported in the human population inhabiting the Ethiopian highlands. Furthermore, we present evidence of strong selection and high divergence between Ethiopian high- and low-altitude cattle populations at three new candidate genes (CLCA2, SLC26A2, and CBFA2T3), putatively linked to high-altitude adaptation in cattle. Our findings provide possible examples of convergent selection between cattle and humans as well as unique African cattle signature to the challenges of living in the Ethiopian mountainous regions.</p

    Table5_Genomic adaptation of Ethiopian indigenous cattle to high altitude.XLSX

    No full text
    The mountainous areas of Ethiopia represent one of the most extreme environmental challenges in Africa faced by humans and other inhabitants. Selection for high-altitude adaptation is expected to have imprinted the genomes of livestock living in these areas. Here we assess the genomic signatures of positive selection for high altitude adaptation in three cattle populations from the Ethiopian mountainous areas (Semien, Choke, and Bale mountains) compared to three Ethiopian lowland cattle populations (Afar, Ogaden, and Boran), using whole-genome resequencing and three genome scan approaches for signature of selection (iHS, XP-CLR, and PBS). We identified several candidate selection signature regions and several high-altitude adaptation genes. These include genes such as ITPR2, MB, and ARNT previously reported in the human population inhabiting the Ethiopian highlands. Furthermore, we present evidence of strong selection and high divergence between Ethiopian high- and low-altitude cattle populations at three new candidate genes (CLCA2, SLC26A2, and CBFA2T3), putatively linked to high-altitude adaptation in cattle. Our findings provide possible examples of convergent selection between cattle and humans as well as unique African cattle signature to the challenges of living in the Ethiopian mountainous regions.</p

    Table2_Genomic adaptation of Ethiopian indigenous cattle to high altitude.XLSX

    Get PDF
    The mountainous areas of Ethiopia represent one of the most extreme environmental challenges in Africa faced by humans and other inhabitants. Selection for high-altitude adaptation is expected to have imprinted the genomes of livestock living in these areas. Here we assess the genomic signatures of positive selection for high altitude adaptation in three cattle populations from the Ethiopian mountainous areas (Semien, Choke, and Bale mountains) compared to three Ethiopian lowland cattle populations (Afar, Ogaden, and Boran), using whole-genome resequencing and three genome scan approaches for signature of selection (iHS, XP-CLR, and PBS). We identified several candidate selection signature regions and several high-altitude adaptation genes. These include genes such as ITPR2, MB, and ARNT previously reported in the human population inhabiting the Ethiopian highlands. Furthermore, we present evidence of strong selection and high divergence between Ethiopian high- and low-altitude cattle populations at three new candidate genes (CLCA2, SLC26A2, and CBFA2T3), putatively linked to high-altitude adaptation in cattle. Our findings provide possible examples of convergent selection between cattle and humans as well as unique African cattle signature to the challenges of living in the Ethiopian mountainous regions.</p

    Table3_Genomic adaptation of Ethiopian indigenous cattle to high altitude.XLSX

    No full text
    The mountainous areas of Ethiopia represent one of the most extreme environmental challenges in Africa faced by humans and other inhabitants. Selection for high-altitude adaptation is expected to have imprinted the genomes of livestock living in these areas. Here we assess the genomic signatures of positive selection for high altitude adaptation in three cattle populations from the Ethiopian mountainous areas (Semien, Choke, and Bale mountains) compared to three Ethiopian lowland cattle populations (Afar, Ogaden, and Boran), using whole-genome resequencing and three genome scan approaches for signature of selection (iHS, XP-CLR, and PBS). We identified several candidate selection signature regions and several high-altitude adaptation genes. These include genes such as ITPR2, MB, and ARNT previously reported in the human population inhabiting the Ethiopian highlands. Furthermore, we present evidence of strong selection and high divergence between Ethiopian high- and low-altitude cattle populations at three new candidate genes (CLCA2, SLC26A2, and CBFA2T3), putatively linked to high-altitude adaptation in cattle. Our findings provide possible examples of convergent selection between cattle and humans as well as unique African cattle signature to the challenges of living in the Ethiopian mountainous regions.</p

    Table4_Genomic adaptation of Ethiopian indigenous cattle to high altitude.XLSX

    No full text
    The mountainous areas of Ethiopia represent one of the most extreme environmental challenges in Africa faced by humans and other inhabitants. Selection for high-altitude adaptation is expected to have imprinted the genomes of livestock living in these areas. Here we assess the genomic signatures of positive selection for high altitude adaptation in three cattle populations from the Ethiopian mountainous areas (Semien, Choke, and Bale mountains) compared to three Ethiopian lowland cattle populations (Afar, Ogaden, and Boran), using whole-genome resequencing and three genome scan approaches for signature of selection (iHS, XP-CLR, and PBS). We identified several candidate selection signature regions and several high-altitude adaptation genes. These include genes such as ITPR2, MB, and ARNT previously reported in the human population inhabiting the Ethiopian highlands. Furthermore, we present evidence of strong selection and high divergence between Ethiopian high- and low-altitude cattle populations at three new candidate genes (CLCA2, SLC26A2, and CBFA2T3), putatively linked to high-altitude adaptation in cattle. Our findings provide possible examples of convergent selection between cattle and humans as well as unique African cattle signature to the challenges of living in the Ethiopian mountainous regions.</p

    dryad_geno

    No full text
    Genotype data following genotyping on the Illumina 57k SNP chip for chicken. Data is provided in a format compatible with GenABEL for R

    Signatures of positive selection in African Butana and Kenana dairy zebu cattle

    No full text
    <div><p>Butana and Kenana are two types of zebu cattle found in Sudan. They are unique amongst African indigenous zebu cattle because of their high milk production. Aiming to understand their genome structure, we genotyped 25 individuals from each breed using the Illumina BovineHD Genotyping BeadChip. Genetic structure analysis shows that both breeds have an admixed genome composed of an even proportion of indicine (0.75 ± 0.03 in Butana, 0.76 ± 0.006 in Kenana) and taurine (0.23 ± 0.009 in Butana, 0.24 ± 0.006 in Kenana) ancestries. We also observe a proportion of 0.02 to 0.12 of European taurine ancestry in ten individuals of Butana that were sampled from cattle herds in Tamboul area suggesting local crossbreeding with exotic breeds. Signatures of selection analyses (<i>iHS</i> and <i>Rsb</i>) reveal 87 and 61 candidate positive selection regions in Butana and Kenana, respectively. These regions span genes and quantitative trait loci (QTL) associated with biological pathways that are important for adaptation to marginal environments (e.g., immunity, reproduction and heat tolerance). Trypanotolerance QTL are intersecting candidate regions in Kenana cattle indicating selection pressure acting on them, which might be associated with an unexplored level of trypanotolerance in this cattle breed. Several dairy traits QTL are overlapping the identified candidate regions in these two zebu cattle breeds. Our findings underline the potential to improve dairy production in the semi-arid pastoral areas of Africa through breeding improvement strategy of indigenous local breeds.</p></div
    corecore