203 research outputs found

    Safety, the Preface Paradox and Possible Worlds Semantics

    Get PDF
    This paper contains an argument to the effect that possible worlds semantics renders semantic knowledge impossible, no matter what ontological interpretation is given to possible worlds. The essential contention made is that possible worlds semantic knowledge is unsafe and this is shown by a parallel with the preface paradox

    Spatio-temporal variation in the zooplankton prey of lesser sandeels : species and community trait patterns from the continuous plankton recorder

    Get PDF
    The phenology, distribution and size composition of plankton communities are changing rapidly in response to warming. This may lead to shifts in the prey fields of planktivorous fish, which play a key role in transferring energy up marine food chains. Here, we use 60+ years of Continuous Plankton Recorder data to explore temporal trends in key taxa and community traits in the prey field of planktivorous lesser sandeels (Ammodytes marinus) in the North Sea, the Faroes and southern Iceland. We found marked spatial variation in the prey field, with Calanus copepods generally being a key component much more common in the northern part of the study area, but not further south. In the western North Sea, the estimated amount of available energy in the prey field has decreased by more than 50% since the 1960s. This decrease was accompanied by declining abundances of small copepods, and shifts in the timing of peak annual prey abundances out of the sandeel foraging season. Further, the estimated average prey community body prey size has increased in several of the locations considered. Overall, our results point to the importance of considering the full prey field of planktivores regional studies of prey fields, rather than and caution against inferring ecological consequences based only on large-scale trends in key taxa or mean community traits

    Can biodiversity of preexisting and created salt marshes match across scales? An assessment from microbes to predators

    Get PDF
    Coastal wetlands are rapidly disappearing worldwide due to a variety of processes, including climate change and flood control. The rate of loss in the Mississippi River Delta is among the highest in the world and billions of dollars have been allocated to build and restore coastal wetlands. A key question guiding assessment is whether created coastal salt marshes have similar biodiversity to preexisting, reference marshes. However, the numerous biodiversity metrics used to make these determinations are typically scale dependent and often conflicting. Here, we applied ecological theory to compare the diversity of different assemblages (surface and below-surface soil microbes, plants, macroinfauna, spiders, and on-marsh and off-marsh nekton) between two created marshes (4–6 years old) and four reference marshes. We also quantified the scale-dependent effects of species abundance distribution, aggregation, and density on richness differences and explored differences in species composition. Total, between-sample, and within-sample diversity (γ, β, and α, respectively) were not consistently lower at created marshes. Richness decomposition varied greatly among assemblages and marshes (e.g., soil microbes showed high equitability and α diversity, but plant diversity was restricted to a few dominant species with high aggregation). However, species abundance distribution, aggregation, and density patterns were not directly associated with differences between created and reference marshes. One exception was considerably lower density for macroinfauna at one of the created marshes, which was drier because of being at a higher elevation and having coarser substrate compared with the other marshes. The community compositions of created marshes were more dissimilar than reference marshes for microbe and macroinfauna assemblages. However, differences were small, particularly for microbes. Together, our results suggest generally similar taxonomic diversity and composition between created and reference marshes. This provides support for the creation of marsh habitat as tools for the maintenance and restoration of coastal biodiversity. However, caution is needed when creating marshes because specific building and restoration plans may lead to different colonization patterns

    Randomized trial of neoadjuvant vaccination with tumor-cell lysate induces T cell response in low-grade gliomas

    Get PDF
    BACKGROUND. Long-term prognosis of WHO grade II low-grade gliomas (LGGs) is poor, with a high risk of recurrence and malignant transformation into high-grade gliomas. Given the relatively intact immune system of patients with LGGs and the slow tumor growth rate, vaccines are an attractive treatment strategy. METHODS. We conducted a pilot study to evaluate the safety and immunological effects of vaccination with GBM6-AD, lysate of an allogeneic glioblastoma stem cell line, with poly-ICLC in patients with LGGs. Patients were randomized to receive the vaccines before surgery (arm 1) or not (arm 2) and all patients received adjuvant vaccines. Coprimary outcomes were to evaluate safety and immune response in the tumor. RESULTS. A total of 17 eligible patients were enrolled — 9 in arm 1 and 8 in arm 2. This regimen was well tolerated with no regimen-limiting toxicity. Neoadjuvant vaccination induced upregulation of type-1 cytokines and chemokines and increased activated CD8+ T cells in peripheral blood. Single-cell RNA/T cell receptor sequencing detected CD8+ T cell clones that expanded with effector phenotype and migrated into the tumor microenvironment (TME) in response to neoadjuvant vaccination. Mass cytometric analyses detected increased tissue resident–like CD8+ T cells with effector memory phenotype in the TME after the neoadjuvant vaccination. CONCLUSION. The regimen induced effector CD8+ T cell response in peripheral blood and enabled vaccine-reactive CD8+ T cells to migrate into the TME. Further refinements of the regimen may have to be integrated into future strategies

    Systemic Delivery of an Adjuvant CXCR4-CXCL12 Signaling Inhibitor Encapsulated in Synthetic Protein Nanoparticles for Glioma Immunotherapy

    Get PDF
    Glioblastoma (GBM) is an aggressive primary brain cancer, with a 5 year survival of ∼5%. Challenges that hamper GBM therapeutic efficacy include (i) tumor heterogeneity, (ii) treatment resistance, (iii) immunosuppressive tumor microenvironment (TME), and (iv) the blood-brain barrier (BBB). The C-X-C motif chemokine ligand-12/C-X-C motif chemokine receptor-4 (CXCL12/CXCR4) signaling pathway is activated in GBM and is associated with tumor progression. Although the CXCR4 antagonist (AMD3100) has been proposed as an attractive anti-GBM therapeutic target, it has poor pharmacokinetic properties, and unfavorable bioavailability has hampered its clinical implementation. Thus, we developed synthetic protein nanoparticles (SPNPs) coated with the transcytotic peptide iRGD (AMD3100-SPNPs) to target the CXCL2/CXCR4 pathway in GBM via systemic delivery. We showed that AMD3100-SPNPs block CXCL12/CXCR4 signaling in three mouse and human GBM cell cultures in vitro and in a GBM mouse model in vivo. This results in (i) inhibition of GBM proliferation, (ii) reduced infiltration of CXCR4+ monocytic myeloid-derived suppressor cells (M-MDSCs) into the TME, (iii) restoration of BBB integrity, and (iv) induction of immunogenic cell death (ICD), sensitizing the tumor to radiotherapy and leading to anti-GBM immunity. Additionally, we showed that combining AMD3100-SPNPs with radiation led to long-term survival, with ∼60% of GBM tumor-bearing mice remaining tumor free after rechallenging with a second GBM in the contralateral hemisphere. This was due to a sustained anti-GBM immunological memory response that prevented tumor recurrence without additional treatment. In view of the potent ICD induction and reprogrammed tumor microenvironment, this SPNP-mediated strategy has a significant clinical translation applicability.Fil: Alghamri, Mahmoud S.. University Of Michigan Medical School; Estados UnidosFil: Banerjee, Kaushik. University Of Michigan Medical School; Estados UnidosFil: Mujeeb, Anzar A.. University Of Michigan Medical School; Estados UnidosFil: Mauser, Ava. University of Michigan; Estados UnidosFil: Taher, Ayman. University Of Michigan Medical School; Estados UnidosFil: Thalla, Rohit. University Of Michigan Medical School; Estados UnidosFil: McClellan, Brandon L.. University Of Michigan Medical School; Estados UnidosFil: Varela, Maria L.. University Of Michigan Medical School; Estados UnidosFil: Stamatovic, Svetlana M.. University Of Michigan Medical School; Estados UnidosFil: Martinez Revollar, Gabriela. University Of Michigan Medical School; Estados UnidosFil: Andjelkovic, Anuska V.. University Of Michigan Medical School; Estados UnidosFil: Gregory, Jason V.. University of Michigan; Estados UnidosFil: Kadiyala, Padma. University Of Michigan Medical School; Estados UnidosFil: Calinescu, Alexandra. University Of Michigan Medical School; Estados UnidosFil: Jiménez, Jennifer A.. University of Michigan; Estados UnidosFil: Apfelbaum, April A.. University of Michigan; Estados UnidosFil: Lawlor, Elizabeth R.. University of Washington; Estados UnidosFil: Carney, Stephen. University of Michigan; Estados UnidosFil: Comba, Andrea. University Of Michigan Medical School; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Faisal, Syed Mohd. University Of Michigan Medical School; Estados UnidosFil: Barissi, Marcus. University Of Michigan Medical School; Estados UnidosFil: Edwards, Marta B.. University Of Michigan Medical School; Estados UnidosFil: Appelman, Henry. University Of Michigan Medical School; Estados UnidosFil: Sun, Yilun. Case Western Reserve University; Estados UnidosFil: Gan, Jingyao. University of Michigan; Estados UnidosFil: Ackermann, Rose. University of Michigan; Estados UnidosFil: Schwendeman, Anna. University of Michigan; Estados UnidosFil: Candolfi, Marianela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas; ArgentinaFil: Olin, Michael R.. University of Minnesota; Estados UnidosFil: Lahann, Joerg. University of Michigan; Estados UnidosFil: Lowenstein, Pedro R.. University of Michigan; Estados UnidosFil: Castro, Maria G.. University of Michigan; Estados Unido

    Human Immunity and the Design of Multi-Component, Single Target Vaccines

    Get PDF
    BACKGROUND: Inclusion of multiple immunogens to target a single organism is a strategy being pursued for many experimental vaccines, especially where it is difficult to generate a strongly protective response from a single immunogen. Although there are many human vaccines that contain multiple defined immunogens, in almost every case each component targets a different pathogen. As a consequence, there is little practical experience for deciding where the increased complexity of vaccines with multiple defined immunogens vaccines targeting single pathogens will be justifiable. METHODOLOGY/PRINCIPAL FINDINGS: A mathematical model, with immunogenicity parameters derived from a database of human responses to established vaccines, was used to predict the increase in the efficacy and the proportion of the population protected resulting from addition of further immunogens. The gains depended on the relative protection and the range of responses in the population to each immunogen and also to the correlation of the responses between immunogens. In most scenarios modeled, the gain in overall efficacy obtained by adding more immunogens was comparable to gains obtained from a single immunogen through the use of better formulations or adjuvants. Multi-component single target vaccines were more effective at decreasing the proportion of poor responders than increasing the overall efficacy of the vaccine in a population. CONCLUSIONS/SIGNIFICANCE: Inclusion of limited number of antigens in a vaccine aimed at targeting a single organism will increase efficacy, but the gains are relatively modest and for a practical vaccine there are constraints that are likely to limit multi-component single target vaccines to a small number of key antigens. The model predicts that this type of vaccine will be most useful where the critical issue is the reduction in proportion of poor responders

    Class dynamics of development: a methodological note

    Get PDF
    This article argues that class relations are constitutive of developmental processes and central to understanding inequality within and between countries. In doing so it illustrates and explains the diversity of the actually existing forms of class relations, and the ways in which they interplay with other social relations such as gender and ethnicity. This is part of a wider project to re- vitalise class analysis in the study of development problems and experiences

    Nucleotide diversity maps reveal variation in diversity among wheat genomes and chromosomes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A genome-wide assessment of nucleotide diversity in a polyploid species must minimize the inclusion of homoeologous sequences into diversity estimates and reliably allocate individual haplotypes into their respective genomes. The same requirements complicate the development and deployment of single nucleotide polymorphism (SNP) markers in polyploid species. We report here a strategy that satisfies these requirements and deploy it in the sequencing of genes in cultivated hexaploid wheat (<it>Triticum aestivum</it>, genomes AABBDD) and wild tetraploid wheat (<it>Triticum turgidum </it>ssp. <it>dicoccoides</it>, genomes AABB) from the putative site of wheat domestication in Turkey. Data are used to assess the distribution of diversity among and within wheat genomes and to develop a panel of SNP markers for polyploid wheat.</p> <p>Results</p> <p>Nucleotide diversity was estimated in 2114 wheat genes and was similar between the A and B genomes and reduced in the D genome. Within a genome, diversity was diminished on some chromosomes. Low diversity was always accompanied by an excess of rare alleles. A total of 5,471 SNPs was discovered in 1791 wheat genes. Totals of 1,271, 1,218, and 2,203 SNPs were discovered in 488, 463, and 641 genes of wheat putative diploid ancestors, <it>T. urartu</it>, <it>Aegilops speltoides</it>, and <it>Ae. tauschii</it>, respectively. A public database containing genome-specific primers, SNPs, and other information was constructed. A total of 987 genes with nucleotide diversity estimated in one or more of the wheat genomes was placed on an <it>Ae. tauschii </it>genetic map, and the map was superimposed on wheat deletion-bin maps. The agreement between the maps was assessed.</p> <p>Conclusions</p> <p>In a young polyploid, exemplified by <it>T. aestivum</it>, ancestral species are the primary source of genetic diversity. Low effective recombination due to self-pollination and a genetic mechanism precluding homoeologous chromosome pairing during polyploid meiosis can lead to the loss of diversity from large chromosomal regions. The net effect of these factors in <it>T. aestivum </it>is large variation in diversity among genomes and chromosomes, which impacts the development of SNP markers and their practical utility. Accumulation of new mutations in older polyploid species, such as wild emmer, results in increased diversity and its more uniform distribution across the genome.</p

    Integrating data types to estimate spatial patterns of avian migration across the Western Hemisphere

    Get PDF
    For many avian species, spatial migration patterns remain largely undescribed, especially across hemispheric extents. Recent advancements in tracking technologies and high-resolution species distribution models (i.e., eBird Status and Trends products) provide new insights into migratory bird movements and offer a promising opportunity for integrating independent data sources to describe avian migration. Here, we present a three-stage modeling framework for estimating spatial patterns of avian migration. First, we integrate tracking and band re-encounter data to quantify migratory connectivity, defined as the relative proportions of individuals migrating between breeding and nonbreeding regions. Next, we use estimated connectivity proportions along with eBird occurrence probabilities to produce probabilistic least-cost path (LCP) indices. In a final step, we use generalized additive mixed models (GAMMs) both to evaluate the ability of LCP indices to accurately predict (i.e., as a covariate) observed locations derived from tracking and band re-encounter data sets versus pseudo-absence locations during migratory periods and to create a fully integrated (i.e., eBird occurrence, LCP, and tracking/band re-encounter data) spatial prediction index for mapping species-specific seasonal migrations. To illustrate this approach, we apply this framework to describe seasonal migrations of 12 bird species across the Western Hemisphere during pre- and postbreeding migratory periods (i.e., spring and fall, respectively). We found that including LCP indices with eBird occurrence in GAMMs generally improved the ability to accurately predict observed migratory locations compared to models with eBird occurrence alone. Using three performance metrics, the eBird + LCP model demonstrated equivalent or superior fit relative to the eBird-only model for 22 of 24 species–season GAMMs. In particular, the integrated index filled in spatial gaps for species with over-water movements and those that migrated over land where there were few eBird sightings and, thus, low predictive ability of eBird occurrence probabilities (e.g., Amazonian rainforest in South America). This methodology of combining individual-based seasonal movement data with temporally dynamic species distribution models provides a comprehensive approach to integrating multiple data types to describe broad-scale spatial patterns of animal movement. Further development and customization of this approach will continue to advance knowledge about the full annual cycle and conservation of migratory birds
    corecore