23 research outputs found
Data mining approach to estimate the duration of drug therapy from longitudinal electronic medical records
Background: Electronic Medical Records (EMRs) from primary/ ambulatory care systems present a new and promising source of information for conducting clinical and translational research. Objectives: To address the methodological and computational challenges in order to extract reliable medication information from raw data which is often complex, incomplete and erroneous. To assess whether the use of specific chaining fields of medication information may additionally improve the data quality. Methods: Guided by a range of challenges associated with missing and internally inconsistent data, we introduce two methods for the robust extraction of patient-level medication data. First method relies on chaining fields to estimate duration of treatment (āchainingā), while second disregards chaining fields and relies on the chronology of records (ācontinuousā). Centricity EMR database was used to estimate treatment duration with both methods for two widely prescribed drugs among type 2 diabetes patients: insulin and glucagon-like peptide-1 receptor agonists. Results: At individual patient level the āchainingā approach could identify the treatment alterations longitudinally and produced more robust estimates of treatment duration for individual drugs, while the ācontinuousā method was unable to capture that dynamics. At population level, both methods produced similar estimates of average treatment duration, however, notable differences were observed at individual-patient level. Conclusion: The proposed algorithms explicitly identify and handle longitudinal erroneous or missing entries and estimate treatment duration with specific drug(s) of interest, which makes them a valuable tool for future EMR based clinical and pharmaco-epidemiological studies. To improve accuracy of real-world based studies, implementing chaining fields of medication information is recommended.Publisher PDFPeer reviewe
Performance evaluation of binary classifier using Relative Cost Curve
MaÄ£istra darbs ir veltÄ«ts klasifikÄcijas algoritmu precizitÄtes novÄrtÄÅ”anas
metodÄm gadÄ«jumÄ, kad disklasifikÄcijas sekas atŔķiras starp klasÄm. AprakstÄ«tas
izmaksu lÄ«kÅu un Brajera lÄ«kÅu metodes. Galvenie rezultÄti izstrÄdÄti
relatÄ«vo izmaksu lÄ«kÅu pieejai. BinÄra klasifikatora precizitÄtes skalÄrai novertÄÅ”anai
piedÄvÄts apskatÄ«t laukumu virs lÄ«knes. Ir aprakstÄ«ts kÄ paplaÅ”inÄt
metodi vairÄku klaÅ”u problÄmai, ar pieÅÄmumu, ka sagaidÄmÄs izmaksas ir
atkarÄ«gas tikai no Ä«stÄs klases disklasifikÄcijas.
AtslÄgas vÄrdi: klasifikÄcija, ROC lÄ«kne, izmaksu lÄ«kne, Brajera lÄ«kne, relatÄ«vo
izmaksu līkne.Master Thesis is devoted to methods of performance evaluation of classifier
under unequal misclassification costs. Cost Curves and Brier Curves
methods are described. Main results are developed for Relative Cost Curves
technique. The concept of Area Above the Curve is introduced as scalar
measure of classifier performance. Relative Cost Curves technique is extended
to multicategory problems when misclassification costs depend only on
the true class.
Keywords: classification, ROC curve, Cost Curve, Brier Curve, Relative
Costs Curve
An agregation approach for solving bilevel linear programming problems
Diplomdarbs ir veltÄ«ts divu lÄ«meÅu lineÄrÄs programmÄÅ”anas uzdevumam gadÄ«jumÄ, kad augÅ”ÄjÄ lÄ«menÄ« ir viena mÄrÄ·a funkcija un apakÅ”ÄjÄ lÄ«menÄ« - vairÄkas. Par darba pamatu ir Åemts nestriktas matemÄtikas algoritms optimÄla plÄna noteikÅ”anai, meklÄjot kompromisu starp augÅ”ÄjÄ un apakÅ”ÄjÄ lÄ«meÅa mÄrÄ·a funkciju optimÄlÄm vÄrtÄ«bÄm. Uzdevuma risinÄjuma rezultÄts ir atkarÄ«gs no algoritmÄ izvÄlÄtajiem parametriem. DiplomdarbÄ ir izstrÄdÄta algoritma parametru analÄ«zes metode, kura izmanto speciÄli Å”im mÄrÄ·im uzdotu faktoragregÄcijas operatoru. Darba praktiskÄ daļa satur optimÄlÄs izvietoÅ”anas problÄmu, kuras risinÄÅ”anas shÄma ir ilustrÄta ar skaitlisko piemÄru.
AtslÄgas vÄrdi: LineÄrÄ programmÄÅ”ana, vairÄku mÄrÄ·a funkciju lineÄrÄs programmÄÅ”anas uzdevums, divu lÄ«meÅu lineÄrÄs programmÄÅ”anas uzdevums, agregÄcijas
operators, visparinÄtais agregÄcijas operators.The thesis is devoted to bi-level linear programming problem with a single objective function on the upper level and multiple objective functions on the lower level. As initial point was taken fuzzy algorithm for finding optimal solutions by choosing compromises between upper and lower level functions' optimal values. The solution
of the problem depends on the algorithm's parameters. Specially constructed quotient aggregation is applied in algorithm's parameters analysis method, which has
been developed in the thesis. Practical part of the thesis contains optimal location problem, of which a solution scheme is illustrated by numerical example.
Keywords: Linear programming, multi-objective linear programming problem, bilevel linear programming problem, aggregation operator, general aggregation operator
Kochen mit Tim MƤlzer : ein Vergleich zwischen ƶffentlich - rechtlichem und privatem Sender
Diese Bachelorarbeit befasst sich mit der Fragestellung, inwieweit sich ƶffentlich-rechtliche und private Fernsehsendungen gleicher Thematik in Bezug auf Anspruch und Konzeption unterscheiden. Es soll zudem verdeutlicht werden, warum sich der jeweilige Sender fĆ¼r dieses Format entschieden hat. Am Beispiel von āSchmeckt nicht, gibtās nicht!ā (VOX) und āTim MƤlzer kocht!ā (Das Erste) werden diese Punkte praktisch untersucht
Weight gain in insulin-treated patients by body mass index category at treatment initiation: new evidence from real-world data in patients with type 2 diabetes
AimsTo evaluate, in patients with type 2 diabetes (T2DM) treated with insulin, the extent of weight gain over 2āyears of insulin treatment, and the dynamics of weight gain in relation to glycaemic achievements over time according to adiposity levels at insulin initiation.Materials and methodsPatients with T2DM (nā=ā155ā917), who commenced insulin therapy and continued it for at least 6āmonths, were selected from a large database of electronic medical records in the USA. Longitudinal changes in body weight and glycated haemoglobin (HbA1c) according to body mass index (BMI) category were estimated.ResultsPatients had a mean age of 59āyears, a mean HbA1c level of 9.5%, and a mean BMI of 35ākg/m2 at insulin initiation. The HbA1c levels at insulin initiation were significantly lower (9.2-9.4%) in the obese patients than in patients with normal body weight (10.0%); however, the proportions of patients with HbA1c >7.5% or >8.0% were similar across the BMI categories. The adjusted weight gain fell progressively with increasing baseline BMI category over 6, 12 and 24āmonths (pā2 to a 0.32ākg loss in those with a BMI > 40ākg/m2.ConclusionsDuring 24āmonths of insulin treatment, obese patients gained significantly less body weight than normal-weight and overweight patients, while achieving clinically similar glycaemic benefits. These data provide reassurance with regard to the use of insulin in obese patients
Data mining approach to estimate the duration of drug therapy from longitudinal electronic medical records
Background: Electronic Medical Records (EMRs) from primary/ ambulatory care systems present a new and promising source of information for conducting clinical and translational research.Objectives: To address the methodological and computational challenges in order to extract reliable medication information from raw data which is often complex, incomplete and erroneous. To assess whether the use of specific chaining fields of medication information may additionally improve the data quality. Methods: Guided by a range of challenges associated with missing and internally inconsistent data, we introduce two methods for the robust extraction of patient-level medication data. First method relies on chaining fields to estimate duration of treatment (āchainingā), while second disregards chaining fields and relies on the chronology of records (ācontinuousā). Centricity EMR database was used to estimate treatment duration with both methods for two widely prescribed drugs among type 2 diabetes patients: insulin and glucagon-like peptide-1 receptor agonists.Results: At individual patient level the āchainingā approach could identify the treatment alterations longitudinally and produced more robust estimates of treatment duration for individual drugs, while the ācontinuousā method was unable to capture that dynamics. At population level, both methods produced similar estimates of average treatment duration, however, notable differences were observed at individual-patient level.Conclusion: The proposed algorithms explicitly identify and handle longitudinal erroneous or missing entries and estimate treatment duration with specific drug(s) of interest, which makes them a valuable tool for future EMR based clinical and pharmaco-epidemiological studies. To improve accuracy of real-world based studies, implementing chaining fields of medication information is recommended