23 research outputs found

    Data mining approach to estimate the duration of drug therapy from longitudinal electronic medical records

    Get PDF
    Background: Electronic Medical Records (EMRs) from primary/ ambulatory care systems present a new and promising source of information for conducting clinical and translational research. Objectives: To address the methodological and computational challenges in order to extract reliable medication information from raw data which is often complex, incomplete and erroneous. To assess whether the use of specific chaining fields of medication information may additionally improve the data quality. Methods: Guided by a range of challenges associated with missing and internally inconsistent data, we introduce two methods for the robust extraction of patient-level medication data. First method relies on chaining fields to estimate duration of treatment (ā€œchainingā€), while second disregards chaining fields and relies on the chronology of records (ā€œcontinuousā€). Centricity EMR database was used to estimate treatment duration with both methods for two widely prescribed drugs among type 2 diabetes patients: insulin and glucagon-like peptide-1 receptor agonists. Results: At individual patient level the ā€œchainingā€ approach could identify the treatment alterations longitudinally and produced more robust estimates of treatment duration for individual drugs, while the ā€œcontinuousā€ method was unable to capture that dynamics. At population level, both methods produced similar estimates of average treatment duration, however, notable differences were observed at individual-patient level. Conclusion: The proposed algorithms explicitly identify and handle longitudinal erroneous or missing entries and estimate treatment duration with specific drug(s) of interest, which makes them a valuable tool for future EMR based clinical and pharmaco-epidemiological studies. To improve accuracy of real-world based studies, implementing chaining fields of medication information is recommended.Publisher PDFPeer reviewe

    Performance evaluation of binary classifier using Relative Cost Curve

    No full text
    MaÄ£istra darbs ir veltÄ«ts klasifikācijas algoritmu precizitātes novērtÄ“Å”anas metodēm gadÄ«jumā, kad disklasifikācijas sekas atŔķiras starp klasēm. AprakstÄ«tas izmaksu lÄ«kņu un Brajera lÄ«kņu metodes. Galvenie rezultāti izstrādāti relatÄ«vo izmaksu lÄ«kņu pieejai. Bināra klasifikatora precizitātes skalārai novertÄ“Å”anai piedāvāts apskatÄ«t laukumu virs lÄ«knes. Ir aprakstÄ«ts kā paplaÅ”ināt metodi vairāku klaÅ”u problēmai, ar pieņēmumu, ka sagaidāmās izmaksas ir atkarÄ«gas tikai no Ä«stās klases disklasifikācijas. Atslēgas vārdi: klasifikācija, ROC lÄ«kne, izmaksu lÄ«kne, Brajera lÄ«kne, relatÄ«vo izmaksu lÄ«kne.Master Thesis is devoted to methods of performance evaluation of classifier under unequal misclassification costs. Cost Curves and Brier Curves methods are described. Main results are developed for Relative Cost Curves technique. The concept of Area Above the Curve is introduced as scalar measure of classifier performance. Relative Cost Curves technique is extended to multicategory problems when misclassification costs depend only on the true class. Keywords: classification, ROC curve, Cost Curve, Brier Curve, Relative Costs Curve

    An agregation approach for solving bilevel linear programming problems

    No full text
    Diplomdarbs ir veltÄ«ts divu lÄ«meņu lineārās programmÄ“Å”anas uzdevumam gadÄ«jumā, kad augŔējā lÄ«menÄ« ir viena mērÄ·a funkcija un apakŔējā lÄ«menÄ« - vairākas. Par darba pamatu ir ņemts nestriktas matemātikas algoritms optimāla plāna noteikÅ”anai, meklējot kompromisu starp augŔējā un apakŔējā lÄ«meņa mērÄ·a funkciju optimālām vērtÄ«bām. Uzdevuma risinājuma rezultāts ir atkarÄ«gs no algoritmā izvēlētajiem parametriem. Diplomdarbā ir izstrādāta algoritma parametru analÄ«zes metode, kura izmanto speciāli Å”im mērÄ·im uzdotu faktoragregācijas operatoru. Darba praktiskā daļa satur optimālās izvietoÅ”anas problēmu, kuras risināŔanas shēma ir ilustrēta ar skaitlisko piemēru. Atslēgas vārdi: Lineārā programmÄ“Å”ana, vairāku mērÄ·a funkciju lineārās programmÄ“Å”anas uzdevums, divu lÄ«meņu lineārās programmÄ“Å”anas uzdevums, agregācijas operators, visparinātais agregācijas operators.The thesis is devoted to bi-level linear programming problem with a single objective function on the upper level and multiple objective functions on the lower level. As initial point was taken fuzzy algorithm for finding optimal solutions by choosing compromises between upper and lower level functions' optimal values. The solution of the problem depends on the algorithm's parameters. Specially constructed quotient aggregation is applied in algorithm's parameters analysis method, which has been developed in the thesis. Practical part of the thesis contains optimal location problem, of which a solution scheme is illustrated by numerical example. Keywords: Linear programming, multi-objective linear programming problem, bilevel linear programming problem, aggregation operator, general aggregation operator

    Kochen mit Tim MƤlzer : ein Vergleich zwischen ƶffentlich - rechtlichem und privatem Sender

    Get PDF
    Diese Bachelorarbeit befasst sich mit der Fragestellung, inwieweit sich ƶffentlich-rechtliche und private Fernsehsendungen gleicher Thematik in Bezug auf Anspruch und Konzeption unterscheiden. Es soll zudem verdeutlicht werden, warum sich der jeweilige Sender fĆ¼r dieses Format entschieden hat. Am Beispiel von ā€žSchmeckt nicht, gibtā€™s nicht!ā€œ (VOX) und ā€žTim MƤlzer kocht!ā€œ (Das Erste) werden diese Punkte praktisch untersucht

    Weight gain in insulin-treated patients by body mass index category at treatment initiation: new evidence from real-world data in patients with type 2 diabetes

    No full text
    AimsTo evaluate, in patients with type 2 diabetes (T2DM) treated with insulin, the extent of weight gain over 2ā€‰years of insulin treatment, and the dynamics of weight gain in relation to glycaemic achievements over time according to adiposity levels at insulin initiation.Materials and methodsPatients with T2DM (nā€‰=ā€‰155ā€‰917), who commenced insulin therapy and continued it for at least 6ā€‰months, were selected from a large database of electronic medical records in the USA. Longitudinal changes in body weight and glycated haemoglobin (HbA1c) according to body mass index (BMI) category were estimated.ResultsPatients had a mean age of 59ā€‰years, a mean HbA1c level of 9.5%, and a mean BMI of 35ā€‰kg/m2 at insulin initiation. The HbA1c levels at insulin initiation were significantly lower (9.2-9.4%) in the obese patients than in patients with normal body weight (10.0%); however, the proportions of patients with HbA1c >7.5% or >8.0% were similar across the BMI categories. The adjusted weight gain fell progressively with increasing baseline BMI category over 6, 12 and 24ā€‰months (pā€‰2 to a 0.32ā€‰kg loss in those with a BMI > 40ā€‰kg/m2.ConclusionsDuring 24ā€‰months of insulin treatment, obese patients gained significantly less body weight than normal-weight and overweight patients, while achieving clinically similar glycaemic benefits. These data provide reassurance with regard to the use of insulin in obese patients

    Data mining approach to estimate the duration of drug therapy from longitudinal electronic medical records

    No full text
    Background: Electronic Medical Records (EMRs) from primary/ ambulatory care systems present a new and promising source of information for conducting clinical and translational research.Objectives: To address the methodological and computational challenges in order to extract reliable medication information from raw data which is often complex, incomplete and erroneous. To assess whether the use of specific chaining fields of medication information may additionally improve the data quality. Methods: Guided by a range of challenges associated with missing and internally inconsistent data, we introduce two methods for the robust extraction of patient-level medication data. First method relies on chaining fields to estimate duration of treatment (ā€œchainingā€), while second disregards chaining fields and relies on the chronology of records (ā€œcontinuousā€). Centricity EMR database was used to estimate treatment duration with both methods for two widely prescribed drugs among type 2 diabetes patients: insulin and glucagon-like peptide-1 receptor agonists.Results: At individual patient level the ā€œchainingā€ approach could identify the treatment alterations longitudinally and produced more robust estimates of treatment duration for individual drugs, while the ā€œcontinuousā€ method was unable to capture that dynamics. At population level, both methods produced similar estimates of average treatment duration, however, notable differences were observed at individual-patient level.Conclusion: The proposed algorithms explicitly identify and handle longitudinal erroneous or missing entries and estimate treatment duration with specific drug(s) of interest, which makes them a valuable tool for future EMR based clinical and pharmaco-epidemiological studies. To improve accuracy of real-world based studies, implementing chaining fields of medication information is recommended
    corecore