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Abstract

Our paper deals with the problem of choosing
correct parameters for the bilevel linear program-
ming solving algorithm proposed by M. Sakawa and
I. Nishizaki. We suggest an approach based on fac-
toraggregation, which is a specially designed general
aggregation operator. The idea of factoraggregation
arises from factorization by the equivalence relation
generated by the upper level objective function. We
prove several important properties of the factorag-
gregation result regarding the analysis of param-
eters in order to find an optimal solution for the
problem. We illustrate the proposed method with
some numerical and graphical examples, in particu-
lar we consider a modification of the mixed produc-
tion planning problem.

Keywords: General aggregation operator, multi-
objective linear programming problem, bilevel lin-
ear programming problem

1. Introduction

The paper is devoted to bilevel linear programming
problems (BLPP) with only one objective on the
upper level. We propose a special design of aggre-
gation operator for the analysis of the satisfaction
degree of objectives on each level and the choice of
solving parameters values. In the context of our
research each objective generates a fuzzy set cor-
responding to the objective membership function.
As a result, the proposed aggregation operator is
a general aggregation operator. We investigate its
properties and describe an application scheme.
In the first section we consider formulation of

BLPP, which is a special class of multi-objective lin-
ear programming problems (MOLP). Then we ob-
serve the MOLP fuzzy solution method involving
membership functions of objectives introduced by
H.J. Zimmermann [10]. Using this method the ini-
tial MOLP can be reduced to the ordinary linear
programming problem, where an aggregation of all
objectives’ membership functions is maximized. In
the second section we recall the definitions of an
ordinary aggregation operator and of a general ag-
gregation operator acting on fuzzy structures, these
concepts were introduced by A. Takaci [9]. Then
we introduce a construction of a factoraggregation
operator, which is a case of the general aggregation

operator. The idea of factoraggregation is based on
factorization by an equivalence relation. We show
that all properties of the definition of a general ag-
gregation operator such as the boundary conditions
and the monotonicity hold for the factoraggrega-
tion operator. In the third section we show how
factoraggregation can be applied for solving BLPP.
This section is based on the interactive method of
solution of bilevel linear programming problems in-
troduced by M. Sakawa and I. Nishizaki [7],[8] and
involving some parameters for the upper and lower
level objectives. We illustrate with some numeri-
cal and graphical examples showing how factorag-
gregation is applied to the analysis of the choice
of the parameters for solving BLPP. Several impor-
tant properties of the result of factoraggregation are
proved, these properties help us in the process of
choosing the solving parameters. In the final section
we illustrate the factoraggregation approach with
the analysis of solving parameters for one particu-
lar problem called the mixed production planning
problem. We modify the problem described in [3]
by considering new objective functions: we maxi-
mize the profit of a production company with the
higher priority and minimize the volume of environ-
mentally damaging products and the dependence of
external suppliers. We give numerical values for the
parameters of the problem and describe how the
analysis of solving parameters could be performed.

2. BLPP fuzzy solution approach

In this paper we observe a bilevel linear program-
ming problem with one objective on the upper
level PU with the higher priority in optimization
than multiple objectives on the lower level PL =
(PL1 , PL2 , ..., PLn ):

PU : y0(x) = c01x1 + c02x2 + ...+ c0kxk −→ min
PL1 : y1(x) = c11x1 + c12x2 + ...+ c1kxk −→ min

. . .

PLn : yn(x) = cn1x1 + cn2x2 + ...+ cnkxk −→ min

D :
{
aj1x1 + aj2x2 + ...+ ajkxk ≤ bj , j = 1,m,
xl ≥ 0, l = 1, k,

where k, l,m, n ∈ N, ajl, bj , cil ∈ R, j = 1,m,
l = 1, k, i = 0, n, and x = (x1, ..., xk) ∈ Rk. We
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assume that D ⊂ Rk is non-empty and bounded,
and we consider the case when the constraint x ∈ D
is related to all levels.
As all objectives rarely reach their optimal values

in a single point, a compromise solution should be
found. In multi-objective optimization Pareto opti-
mality (see, e.g., [5]) is a concept that allows us to
characterize an acceptable solution.

Definition 2.1 x∗ ∈ D is said to be a Pareto opti-
mal solution if and only if there does not exist an-
other x ∈ D such that yi(x) ≤ yi(x∗) for all i = 0, n
and yj(x) 6= yj(x∗) for at least one j.

In 1978 H.J. Zimmermann [10] proposed a fuzzy
solution approach by introducing membership func-
tions of objectives. The membership function char-
acterises the degree of satisfaction for each objec-
tive, i.e. it shows how the objective function is
close to its optimal value (i.e. to its individual
maximum). The construction of the membership
function of objective yi is based on the following
function:

zi(t) =


1, t < ymini ,
t− ymaxi

ymini − ymaxi

, ymini ≤ t ≤ ymaxi ,

0, t > ymaxi ,

where ymini and ymaxi are the individual minimum
and the individual maximum of the objective yi re-
spectively:

ymini = min
x∈D

yi(x), ymaxi = max
x∈D

yi(x), i = 0, n.

We obtain the membership functions of the ob-
jectives by denoting

µi(x) = zi(yi(x)), i = 0, n,

where µ0, µ1, ..., µn : D → [0, 1] are fuzzy subsets of
D:

µi ∈ [0, 1]D, i = 0, n.

A solution x∗ for the MOLP without any hierar-
chy could be found by solving the following linear
programming problem:

min(µ0(x), µ1(x), . . . , µn(x)) −→ max
x∈D

or, in general:

A(µ0(x), µ1(x), . . . , µn(x)) −→ max
x∈D

,

where A is an aggregation operator (see Definition
3.1). However, in case when the objectives are di-
vided between two levels of hierarchy, the present
method does not reflect any priority of the upper
level objective over the lower level.

3. Factoraggregation

Considering the case when there is one objective
function on the upper level and multiple objectives
on the lower level, we suggest a special aggrega-
tion. This aggregation observes objective functions
on the lower level considering the classes of equiva-
lence generated by a function on the upper level:

Ãµ0(µ1, µ2, ..., µn)(x) =

= max
µ0(x)=µ0(u)

A(µ1(u), µ2(u), ..., µn(u)),

where

x, u ∈ D, µ0, µ1, ..., µn ∈ [0, 1]D.

Aggregation Ãµ0 is a specially designed construc-
tion of a general aggregation operator based on an
ordinary aggregation operator A. As the examples
of widely used aggregation operators we can men-
tion the arithmetic and geometric means, the mini-
mum and maximum operators, t-norms and others.
We start with the classical notion of an aggregation
operator (see e.g. [1], [2], [4]).

Definition 3.1 A mapping A :
⋃
n[0, 1]n → [0, 1]

is called an aggregation operator if the following
conditions hold:

(A1) A(0, . . . , 0) = 0;
(A2) A(1, . . . , 1) = 1;
(A3) ∀n ∈ N ∀x1, . . . , xn, y1, . . . , yn ∈ [0, 1]:

if x1 ≤ y1, . . . , xn ≤ yn, then A(x1, . . . , xn) ≤
A(y1, . . . , yn).

Conditions (A1) and (A2) are called the bound-
ary conditions of A, but (A3) means the monotonic-
ity of A.
The general aggregation operator Ã acting on

[0, 1]D, where [0, 1]D is the set of all fuzzy subsets
of D, was introduced in 2003 by A. Takaci [9]. Let
µ1, µ2, ..., µn ∈ [0, 1]D be fuzzy sets. We denote an
order on [0, 1]D by �, the least and the greatest el-
ements of this order are denoted by 0̃ and 1̃, which
are indicators of ∅ and D respectively, i.e.

0̃(x) = 0 and 1̃(x) = 1 for all x ∈ D.

Definition 3.2 A mapping Ã :
⋃
n([0, 1]D)n →

[0, 1]D is called a general aggregation operator if the
following conditions hold:

(Ã1) Ã(0̃, . . . , 0̃) = 0̃;
(Ã2) Ã(1̃, . . . , 1̃) = 1̃;
(Ã3) ∀n ∈ N ∀µ1, ..., µn, η1, ..., ηn ∈ [0, 1]D :

if µ1 � η1, . . . , µn � ηn, then Ã(µ1, . . . , µn) �
Ã(η1, . . . , ηn).

There exist several approaches to construct a gen-
eral aggregation operator Ã based on an ordinary
aggregation operator A. The most simplest one is
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the pointwise extension of an aggregation operator
A:

Ã(µ1, ..., µn)(x) = A(µ1(x), ..., µn(x)),

which, for example, was already used in the previous
section.
Another method of constructing the general ag-

gregation operator Ã is the t - extension [9], whose
idea comes from the classical extension principle
and uses a t-norm (see e.g. [6]).
We introduce a factoraggregation of fuzzy sets

µ1, µ2, . . . , µn by means of a fuzzy set µ0 using the
following construction:

Ãµ0(µ1, . . . , µn)(x) =

= sup
µ0(u)=µ0(x)

A(µ1(u), . . . , µn(u)),

where
µ0, ..., µn ∈ [0, 1]D, x, u ∈ D.

The motivation of using the term factoraggrega-
tion for Ãµ0 is that µ0 generates the equivalence
relation ∼µ0 :

u ∼µ0 v ⇐⇒ µ0(u) = µ0(v),

which factorizes D into the classes Dα of equiva-
lence:

Dα = {x ∈ D | µ0(x) = α}.

Operator Ãµ0 aggregates fuzzy sets in accordance
with these classes of equivalence.
Let us show that properties (Ã1)− (Ã3) hold for

operator Ãµ0 , therefore we can be sure that Ãµ0 is a
general aggregation operator. We consider the case:

µ � η if and only if µ(x) ≤ η(x) for all x ∈ D.

Proposition 3.3 Operator Ãµ0 is a general aggre-
gation operator.

Proof. First we prove the boundary conditions:

1)
Ãµ0(0̃, . . . , 0̃)(x) =

= sup
µ0(u)=µ0(x)

A(0̃(u), . . . , 0̃(u)) =

= sup
µ0(u)=µ0(x)

A(0, . . . , 0) = A(0, . . . , 0) = 0̃(x),

2)
Ãµ0(1̃, . . . , 1̃)(x) =

= sup
µ0(u)=µ0(x)

A(1̃(u), . . . , 1̃(u)) =

= sup
µ0(u)=µ0(x)

A(1, . . . , 1) = A(1, . . . , 1) = 1̃(x).

To prove the monotonicity of Ãµ0 we use the mono-
tonicity of A:

µi � ηi, i = 1, 2, . . . , n =⇒

=⇒ A(µ1(u), . . . , µn(u)) ≤

≤ A(η1(u), . . . , ηn(u)) for all u ∈ D =⇒

=⇒ sup
µ0(u)=µ0(x)

A(µ1(u), . . . , µn(u)) ≤

≤ sup
µ0(u)=µ0(x)

A(η1(u), . . . , ηn(u)) =⇒

=⇒ Ãµ0(µ1, . . . , µn) � Ãµ0(η1, . . . , ηn).

4. Factoraggregation applied for analysis of
BLPP solving parameters

By using membership functions µ0, µ1, ..., µn the
multi-objective linear programming problem can be
reduced to the classical linear programming (LPP):

σ −→ max
x,σ{

µi(x) ≥ σ, i = 0, n,
x ∈ D,

which is equivalent to the following problem:

min(µ0(x), µ1(x), . . . , µn(x)) −→ max
x∈D

(here we use the additional real variable σ). Let
us denote the solution of this LPP by (x∗, σ∗). In
[5] there is described how to verify whether x∗ is
Pareto optimal.

For bilevel linear programming problems
M. Sakawa and I. Nishizaki [7],[8] proposed the
interactive method of solution by involving some
parameters for the upper and lower level objectives.
The algorithm specifies an optimal solution x∗∗

for BLPP according to the chosen values of real
parameters δ,∆L,∆U , where

µ0(x∗∗) ≥ δ

∆L ≤ ∆ = min{µ1(x∗∗), ..., µn(x∗∗)}
µ0(x∗∗) ≤ ∆U .

By this method (see [7],[8]) we solve the linear pro-
gramming problem

σ −→ max
x,σ

µ0 ≥ δ,
µi(x) ≥ σ, i = 1, n,
x ∈ D,

for a given δ, afterwards we check whether ∆ ∈
[∆L,∆U ] and specify the parameters again if it is
necessary.
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Parameter δ describes the minimal satisfactory
level for membership function µ0, but ∆ character-
izes the overall balance between the upper and lower
levels. Taking into account that all three parame-
ters are dependent one on another, the problem of
the choice of parameters becomes important. Let
us consider the following BLPP.

Example 4.1

PU : y0(x) = −x2 −→ min

PL1 : y1(x) = −3
√

3x1 + 3x2 −→ min

PL2 : y2(x) = 3
√

3x1 + 3x2 −→ min

D :


3
√

3x1 + 3x2 ≤ 18
√

3,
−3
√

3x1 + 3x2 ≤ 0,
xl ≥ 0, x2 ≥ 0.

Fig.1 shows how parameter δ depends on parameter
∆. On Fig.1 we can see, that if we choose parameter
δ = 0.6 and interval [∆L,∆U ] = [0.6, 0.7], then a
solution for the problem doesn’t exist. If we first
choose the interval [∆L,∆U ] = [0.6, 0.7], then the
maximal possible value for δ is 0.46. But in case,
when the value of δ is 0.6, then the maximal possible
value of ∆ is 0.33.

Figure 1: Dependence between δ and ∆ for Example
4.1

We specify the general construction of factorag-
gregation Ãµ0 by taking A = min in order to apply
it for the analysis of the parameters of the BLPP
solving algorithm. Fuzzy sets µ1, µ2, . . . , µn in this
case are the membership functions of the lower level
objectives, but fuzzy set µ0 is the membership func-
tion of the upper level objective:

Ãµ0(µ1, µ2, ..., µn)(x) =

= max
µ0(x)=µ0(u)

min(µ1(u), µ2(u), ..., µn(u)),

where
µ1, ..., µn ∈ [0, 1]D, x, u ∈ D.

Denoting Ãµ0(µ1, µ2, ..., µn)(x) = µ(x) we
rewrite µ as µ(x) = z(y0(x)), where z is the function
defined on the interval [ymin0 , ymax0 ] as follows: for

t ∈ [ymin0 , ymax0 ] we take x ∈ D such, that t = y0(x),
and set z(t) = Ãµ0(µ1, µ2, ..., µn)(x) (it is easy to
see, that this value doesn’t depend on x).

Now we consider two functions z0 (introduced in
the second section) and z (defined by the result
of aggregation). The graphical analysis of these
functions (i.e. the graphical analysis of two lines
α = z − 0(t) and α = z(t) ) helps us to choose
parameters ∆L,∆U and δ correctly.
Let us consider the following example.

Example 4.2

PU : y0(x) = x1 − x2 −→ min

PL1 : y1(x) = −0.2x1 − x2 −→ min

PL2 : y2(x) = x2 −→ min

D :


x2 ≤ 6,
5x1 + x2 ≤ 15,
xl ≥ 0, x2 ≥ 0.

Figure 2: Analysis of solving parameters for Exam-
ple 4.2

The graphical analysis of the parameters could be
performed by Fig. 2. The intersection of lines
α = z0(t) and α = z(t) on Fig.2 points out the
optimal solution x∗ of the MOLP problem without
any hierarchy between objectives: t∗ = y0(x∗). In
our case we are dealing with BLPP, when objective
function y0 is minimized with the higher priority
than objectives y1 and y2. The compromised so-
lution x∗ gives us the degree of satisfaction of the
upper level objective δ = 0.51. But the analysis of
Fig. 2 allows us to see, that a minor decrease for
0.0224 in the degree of minimization on the lower
level, which is characterized by the result of factor-
aggregation z(t), will give us a significant increase
for 0.1686 in the degree of minimization δ on the
upper level. It means, that we would rather choose
point t∗∗ = −3.05 to obtain the optimal solution x∗∗
for the BLPP, than point t∗, which gives us the so-
lution without priority for the upper level objective.
The similar graphical analysis could be performed,
when we first choose the values of parameters ∆L

and ∆U , which characterize the degree of minimiza-
tion on the lower level, and then we can find out the
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possible values of the degree of minimization δ for
the upper level objective.
We consider some properties of function z, which

describes the output value of factoraggregation of
the lower level objectives. Function z0 used for
representation of the upper level objective member-
ship function is decreasing on interval [ymin0 , ymax0 ].
Now we consider properties of function z on inter-
val [ymin0 , ymax0 ]. Let us denote t∗ = y0(x∗), where
(x∗, σ∗) is the solution of MOLP without any hier-
archy between objectives.

Proposition 4.3

σ∗ = min{z(t∗), z0(t∗)}.

Proof. We recall that

σ∗ = min{µ0(x∗), ..., µn(x∗)}

and consider two cases.

1) If σ∗ = µ0(x∗), then on the one hand

σ∗ = z0(t∗),

but on the other hand

z0(t∗) = µ0(x∗) ≤ min{µ1(x∗), ..., µn(x∗)} ≤

≤ max
µ0(x∗)=µ0(u)

min{µ1(u), ..., µn(u)} =

= µ(x∗) = z(t∗),

which means

z0(t∗) = min{z0(t∗), z(t∗)}.

2) Now let us suppose

σ∗ = min{µ1(x∗), ..., µn(x∗)} < µ0(x∗)

and show that

σ∗ = µ(x∗) = z(t∗) < z0(t∗).

Considering
σ∗ < µ(x∗) =

= max
µ0(x∗)=µ0(u)

min{µ1(u), ..., µn(u)}

and taking into account that σ∗ < µ0(x∗), we
got the contradiction since σ∗ is the solution of
MOLP.

Proposition 4.4

max
t∈[ymin

0 , t∗]
z(t) = z(t∗).

Proof. Let us suppose that there exists

τ ∈ [ymin0 , t∗[ such that z(τ) > z(t∗) ≥ σ∗.

Then we can find u∗ ∈ D such that

z(τ) = max
z0(τ)=µ0(u)

min{µ1(u), ..., µn(u)} =

= min{µ1(u∗), ..., µn(u∗)} > σ∗

and µ0(u∗) = z0(τ) > σ∗. As a result we got the
contradiction since σ∗ is the solution of MOLP.

Proposition 4.5 Function z is concave (convex
upwards) on interval [ymin0 , ymax0 ].

Proof. We have to prove that

z(λt1 + (1− λ)t2) ≥ λz(t1) + (1− λ)z(t2)

for all t1, t2 ∈ [ymin0 , ymax0 ] and for all λ ∈ [0, 1]. Let
us take such x1 and x2 that

t1 = y0(x1), t2 = y0(x2),

z(t1) = min{µ1(x1), ..., µn(x1)}

and
z(t2) = min{µ1(x2), ..., µn(x2)}.

Then

µi(λx1 + (1− λ)x2) = λµi(x1) + (1− λ)µi(x2) ≥

≥ λmin{µ1(x1), ..., µn(x1)}+

+(1− λ) min{µ1(x2), ..., µn(x2)} =

= λz(t1) + (1− λ)z(t2)

for all i = 1, 2, ..., n. Therefore

z(λt1 + (1− λ)t2) =

= max
µ0(u)=z0(λt1+(1−λ)t2)

min{µ1(u), ..., µn(u)} ≥

≥ min{µ1(λx1+(1−λ)x2), ..., µn(λx1+(1−λ)x2)} ≥

≥ λz(t1) + (1− λ)z(t2).

Let us illustrate these properties with two exam-
ples.

Example 4.6

PU : y0(x) = −3x1 − x2 −→ min

PL1 : y1(x) = 3x1 − 2x2 −→ min

PL2 : y2(x) = x1 − x2 −→ min

D :



−x1 + 3x2 ≤ 21,
x1 + 3x2 ≤ 27,
4x1 + 3x2 ≤ 45,
3x1 + x2 ≤ 30,
xl ≥ 0, x2 ≥ 0.
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Figure 3: Lines α = z0(t) and α = z(t) for Example
4.6

Line α = z(t) on Fig.3 is concave and monotony
increasing till the intersection point t∗, where the
compromise solution could be found.

Example 4.7

PU : y0(x) = x1 − x2 −→ min

PL1 : y1(x) = 3x1 − 2x2 −→ min

PL2 : y2(x) = −3x1 − x2 −→ min

D :



−x1 + 3x2 ≤ 21,
x1 + 3x2 ≤ 27,
4x1 + 3x2 ≤ 45,
3x1 + x2 ≤ 30,
xl ≥ 0, x2 ≥ 0.

Figure 4: Lines α = z0(t) and α = z(t) for Example
4.7

Line α = z(t) on Fig.4 is concave too, but the
compromise solution now could be found in point
t∗, which is not the intersection of lines α = z(t)
and α = z0(t). And line α = z(t) is monotony
increasing till this point.

5. Mixed production planning problem

We consider the following modification of the
mixed production planning problem described by
J.C. Figueroa-Garcia et al. in [3]. The goal of the
mixed production planning problem is to determine
the most profitable manufacturing plan at the same
time minimizing environmentally dangerous prod-
ucts and the dependence on the outsource compa-
nies:

PU :
∑
j∈NJ

∑
i∈NI

spji(xrji + xoji + xsji)−

−(cprjixrji + cpojix
o
ji + cpsjix

s
ji) −→ max

PL1 :
∑
j∈NJ

∑
i∈NI

ecji(xrji + xoji + xsji) −→ min

PL2 :
∑
j∈NJ

∑
i∈NI

wjix
s
ji −→ min

∑
i∈NR

∑
j∈NJ

rmjir(xrji+xoji) ≤ amir, i ∈ NI , r ∈ NR,

xrji, x
o
ji, x

s
ji ≥ 0, xsji ≤ asji, j ∈ NJ , i ∈ NI ,

d
(−)
ji ≤ x

r
ji + xoji + xsji ≤ d

(+)
ji , j ∈ NJ , i ∈ NI .

Index sets:
set NR = {1, 2, ..., R} of all resources r ∈ NR,
set NJ = {1, 2, ..., J} of all products j ∈ NJ ,
set NI = {1, 2, ..., I} of all periods i ∈ NI .
Decision variables:
xrji – quantity of product j to be manufactured in
regular time in the period i,
xoji – quantity of product j to be manufactured in
overtime in the period i,
xsji – quantity of product j to be manufactured by
outsourcing in the period i.
Parameters:
SP = (spji | j ∈ NJ , i ∈ NI), where spji is a sell
price of product j in the period i,
CP r = (cprji | j ∈ NJ , i ∈ NI), where cprji is a
product j production cost in the period i for regu-
lar time,
CP o = (cpoji | j ∈ NJ , i ∈ NI), where cpoji is a prod-
uct j production cost in the period i for overtime,
CP s = (cpsji | j ∈ NJ , i ∈ NI), where cpsji is a prod-
uct j production cost in the period i for outsourcing,
EC = (ecji | j ∈ NJ , i ∈ NI), where ecji is an evalu-
ation of damage to environment caused by product
j in the period i,
W = (wji | j ∈ NJ , i ∈ NI), where wji is a weight
of outsource product j in the period i,
RM = (rmjir | j ∈ NJ , i ∈ NI , r ∈ NR), where
rmjir is an amount of the r raw material units used
to manufacture product j in the period i,
AM = (amir | r ∈ NR, i ∈ NI), where amir is an
availability of the raw material type r in the pe-
riod i,
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AS = (asji | j ∈ NJ , i ∈ NI), where asji is a num-
ber of available outsourced units of product j in the
period i,
D− = (d(−)

ji | j ∈ NJ , i ∈ NI), where d(−)
ji is a mini-

mum demand of product j in the period i,
D+ = (d(+)

ji | j ∈ NJ , i ∈ NI), where d(+)
ji is a

maximum (potential) demand of product j in the
period i.

Maximization problem PU is reduced to the mini-
mization problem by taking the profit function with
the minus sign. This numerical example uses the
following values of the parameters:
I = 1, J = 10, R = 5,
AM = (9 · 106, 4 · 106, 4.5 · 106, 3 · 106, 5.5 · 106),
EC = (8, 9, 5, 4, 3, 7, 2, 1, 6, 10).
Table 1 contains the values of RM . The values of
other parameters are given by Table 2.

HHH
HHj
r 1 2 3 4 5

1 50.47 83.37 90.29 133.27 71.75
2 53.46 79.93 84.88 133.87 55.69
3 106.49 75.30 101.81 113.06 96.03
4 125.26 103.13 94.35 59.82 134.97
5 93.96 120.50 100.36 134.71 78.87
6 137.24 87.68 40.55 110.17 93.26
7 136.14 112.83 67.93 96.40 77.01
8 72.47 53.75 124.05 110.74 99.43
9 56.53 42.53 44.42 66.05 97.82
10 98.72 109.48 56.77 103.07 95.72

Table 1: Values of parameters rmjr for the mixed
production planning problem

j cprj cpsj spj asj d
(+)
j d

(−)
j wj

1 255 260 350 1237 8775 3900 0.07
2 165 200 300 1107 7650 3400 0.15
3 160 185 280 1519 6075 2700 0.07
4 105 130 210 2636 7875 1500 0.05
5 205 240 300 1979 6300 3400 0.05
6 175 190 305 1617 7650 4000 0.08
7 160 210 270 1442 5000 1500 0.05
8 225 245 315 1527 6300 4000 0.05
9 53 105 190 2266 4725 1000 0.18
10 74 120 220 2500 8775 2600 0.25

Table 2: Values of parameters for the mixed pro-
duction planning problem

The graphical analysis of lines α = z0(t) and
α = z(t) is given by Fig.5. The intersection of lines
α = z0(t) and α = z(t) points out the optimal solu-
tion x∗ of MOLP problem without any hierarchy be-
tween objectives: t∗ = y0(x∗). By setting ∆L = 0.7
and ∆U = 0.8 we can observe that δ should lie in
interval [0.765, 0.799], otherwise if δ > 0.799 then
a solution does not exist. The graphical analysis
shows that as the optimal solution of the mixed pro-
duction planning problem it is natural to take x∗∗

Figure 5: Analysis of solving parameters for the
mixed production planning problem

such that t∗∗ = y0(x∗∗).

6. Conclusions

In this paper we introduce the construction of fac-
toraggregation, which is a case of the general ag-
gregation operator. This construction is investi-
gated and applied for the analysis of parameters of
the bilevel linear programming solving algorithm.
The numerical example illustrates how factoraggre-
gation helps us to choose solving parameters accord-
ingly to our vision of the hierarchy between objec-
tive functions.

The considered application uses factoraggrega-
tion defined by means of minimum as the initial
aggregation. Our future work will focus on investi-
gation and comparison of factoraggregation opera-
tors based on different initial operators.
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