14 research outputs found

    Disopyramide is a safe and effective treatment for children with obstructive hypertrophic cardiomyopathy

    Get PDF
    BACKGROUND: Left ventricular outflow tract obstruction (LVOTO) is present in 1/3 of children with Hypertrophic Cardiomyopathy (HCM). Disopyramide improves symptoms associated with LVOTO and delays surgical intervention in adults, but it is not licensed in children. AIM: To describe a single-centre thirty-year experience of using disopyramide to treat LVOTO-related symptoms in a paediatric HCM cohort. METHODS: Clinical data were collected for all patients meeting diagnostic criteria for HCM (<18 years) at the time of initiation, 6 months after, and last follow-up or end of disopyramide treatment. It included demographics, clinical history, 12‑lead electrocardiography, and echocardiography. Comparisons between baseline and 6 month follow up, and end of follow up respectively were performed. RESULTS: Fifty-one patients with HCM were started on disopyramide at a mean age 10.2±5.3 years. At 6 months, of those previously symptomatic, 33(86.8%) reported an improvement of symptoms and 12(31.6%) were asymptomatic. PR interval, corrected QT interval and maximal LVOT gradient had not significantly changed, but fewer participants were noted to have systolic anterior motion of the mitral valve 31 (72.1%) vs. 26 (57.80%). Patients were followed up for a median of 1.9 years (IQR 0.83-4.5). Nine patients (17.6%) reported side effects, and eleven patients (33.3%) with initial improvement in symptoms reported a return or worsening of symptoms requiring a change in medication (n = 4, 12.1%) or left ventricular septal myomectomy (n = 7, 21.2%) during follow up. CONCLUSION: Disopyramide is a safe and effective treatment for LVOTO-related symptoms in childhood obstructive HCM. Any delay in the need for invasive intervention, particularly during childhood, is of clear clinical benefit

    Clinical Features and Natural History of Preadolescent Nonsyndromic Hypertrophic Cardiomyopathy

    Get PDF
    Childhood hypertrophic cardiomyopathy; Outcomes; PhenotypeMiocardiopatía hipertrófica infantil; Resultados; FenotipoMiocardiopatia hipertròfica infantil; Resultats; FenotipBackground Up to one-half of childhood sarcomeric hypertrophic cardiomyopathy (HCM) presents before the age of 12 years, but this patient group has not been systematically characterized. Objectives The aim of this study was to describe the clinical presentation and natural history of patients presenting with nonsyndromic HCM before the age of 12 years. Methods Data from the International Paediatric Hypertrophic Cardiomyopathy Consortium on 639 children diagnosed with HCM younger than 12 years were collected and compared with those from 568 children diagnosed between 12 and 16 years. Results At baseline, 339 patients (53.6%) had family histories of HCM, 132 (20.9%) had heart failure symptoms, and 250 (39.2%) were prescribed cardiac medications. The median maximal left ventricular wall thickness z-score was 8.7 (IQR: 5.3-14.4), and 145 patients (27.2%) had left ventricular outflow tract obstruction. Over a median follow-up period of 5.6 years (IQR: 2.3-10.0 years), 42 patients (6.6%) died, 21 (3.3%) underwent cardiac transplantation, and 69 (10.8%) had life-threatening arrhythmic events. Compared with those presenting after 12 years, a higher proportion of younger patients underwent myectomy (10.5% vs 7.2%; P = 0.045), but fewer received primary prevention implantable cardioverter-defibrillators (18.9% vs 30.1%; P = 0.041). The incidence of mortality or life-threatening arrhythmic events did not differ, but events occurred at a younger age. Conclusions Early-onset childhood HCM is associated with a comparable symptom burden and cardiac phenotype as in patients presenting later in childhood. Long-term outcomes including mortality did not differ by age of presentation, but patients presenting at younger than 12 years experienced adverse events at younger ages.This work was supported by the British Heart Foundation (grant FS/16/72/32270) to Drs Norrish and Kaski. This work is (partly) funded by the National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre. Dr Norrish is supported by Great Ormond Street Hospital Children’s Charity. Drs Field and Kaski are supported by Max’s Foundation and Great Ormond Street Hospital Children’s Charity. Dr Kaski is supported by a Medical Research Council–National Institute for Health Research Clinical Academic Research Partnership award. This work was financially supported by the Foundation for Paediatric Research of Finland (Dr Ojala). Dr Fernandez has received speaker fees from Sanofi-Genzyme. Dr Kubus is supported by MH CZ – DRO, Motol University Hospital (00064203). All other authors have reported that they have no relationships relevant to the contents of this paper to disclose

    Clinical Features and Natural History of Preadolescent Nonsyndromic Hypertrophic Cardiomyopathy

    Get PDF
    BACKGROUND Up to one-half of childhood sarcomeric hypertrophic cardiomyopathy (HCM) presents before the age of 12 years, but this patient group has not been systematically characterized. OBJECTIVES The aim of this study was to describe the clinical presentation and natural history of patients presenting with nonsyndromic HCM before the age of 12 years. METHODS Data from the International Paediatric Hypertrophic Cardiomyopathy Consortium on 639 children diagnosed with HCM younger than 12 years were collected and compared with those from 568 children diagnosed between 12 and 16 years. RESULTS At baseline, 339 patients (53.6%) had family histories of HCM, 132 (20.9%) had heart failure symptoms, and 250 (39.2%) were prescribed cardiac medications. The median maximal left ventricular wall thickness z-score was 8.7 (IQR: 5.3-14.4), and 145 patients (27.2%) had left ventricular outflow tract obstruction. Over a median follow-up period of 5.6 years (IQR: 2.3-10.0 years), 42 patients (6.6%) died, 21 (3.3%) underwent cardiac transplantation, and 69 (10.8%) had life-threatening arrhythmic events. Compared with those presenting after 12 years, a higher proportion of younger patients underwent myectomy (10.5% vs 7.2%; P = 0.045), but fewer received primary prevention implantable cardioverter-defibrillators (18.9% vs 30.1%; P = 0.041). The incidence of mortality or life-threatening arrhythmic events did not differ, but events occurred at a younger age. CONCLUSIONS Early-onset childhood HCM is associated with a comparable symptom burden and cardiac phenotype as in patients presenting later in childhood. Long-term outcomes including mortality did not differ by age of presentation, but patients presenting at younger than 12 years experienced adverse events at younger ages. (C) 2022 The Authors. Published by Elsevier on behalf of the American College of Cardiology Foundation.Peer reviewe

    The evolution of lung cancer and impact of subclonal selection in TRACERx

    Get PDF
    Lung cancer is the leading cause of cancer-associated mortality worldwide. Here we analysed 1,644 tumour regions sampled at surgery or during follow-up from the first 421 patients with non-small cell lung cancer prospectively enrolled into the TRACERx study. This project aims to decipher lung cancer evolution and address the primary study endpoint: determining the relationship between intratumour heterogeneity and clinical outcome. In lung adenocarcinoma, mutations in 22 out of 40 common cancer genes were under significant subclonal selection, including classical tumour initiators such as TP53 and KRAS. We defined evolutionary dependencies between drivers, mutational processes and whole genome doubling (WGD) events. Despite patients having a history of smoking, 8% of lung adenocarcinomas lacked evidence of tobacco-induced mutagenesis. These tumours also had similar detection rates for EGFR mutations and for RET, ROS1, ALK and MET oncogenic isoforms compared with tumours in never-smokers, which suggests that they have a similar aetiology and pathogenesis. Large subclonal expansions were associated with positive subclonal selection. Patients with tumours harbouring recent subclonal expansions, on the terminus of a phylogenetic branch, had significantly shorter disease-free survival. Subclonal WGD was detected in 19% of tumours, and 10% of tumours harboured multiple subclonal WGDs in parallel. Subclonal, but not truncal, WGD was associated with shorter disease-free survival. Copy number heterogeneity was associated with extrathoracic relapse within 1 year after surgery. These data demonstrate the importance of clonal expansion, WGD and copy number instability in determining the timing and patterns of relapse in non-small cell lung cancer and provide a comprehensive clinical cancer evolutionary data resource

    The evolution of non-small cell lung cancer metastases in TRACERx

    Get PDF
    Metastatic disease is responsible for the majority of cancer-related deaths. We report the longitudinal evolutionary analysis of 126 non-small cell lung cancer (NSCLC) tumours from 421 prospectively recruited patients in TRACERx who developed metastatic disease, compared with a control cohort of 144 non-metastatic tumours. In 25% of cases, metastases diverged early, before the last clonal sweep in the primary tumour, and early divergence was enriched for patients who were smokers at the time of initial diagnosis. Simulations suggested that early metastatic divergence more frequently occurred at smaller tumour diameters (less than 8 mm). Single-region primary tumour sampling resulted in 83% of late divergence cases being misclassified as early, highlighting the importance of extensive primary tumour sampling. Polyclonal dissemination, which was associated with extrathoracic disease recurrence, was found in 32% of cases. Primary lymph node disease contributed to metastatic relapse in less than 20% of cases, representing a hallmark of metastatic potential rather than a route to subsequent recurrences/disease progression. Metastasis-seeding subclones exhibited subclonal expansions within primary tumours, probably reflecting positive selection. Our findings highlight the importance of selection in metastatic clone evolution within untreated primary tumours, the distinction between monoclonal versus polyclonal seeding in dictating site of recurrence, the limitations of current radiological screening approaches for early diverging tumours and the need to develop strategies to target metastasis-seeding subclones before relapse

    Genomic–transcriptomic evolution in lung cancer and metastasis

    Get PDF
    Intratumour heterogeneity (ITH) fuels lung cancer evolution, which leads to immune evasion and resistance to therapy. Here, using paired whole-exome and RNA sequencing data, we investigate intratumour transcriptomic diversity in 354 non-small cell lung cancer tumours from 347 out of the first 421 patients prospectively recruited into the TRACERx study. Analyses of 947 tumour regions, representing both primary and metastatic disease, alongside 96 tumour-adjacent normal tissue samples implicate the transcriptome as a major source of phenotypic variation. Gene expression levels and ITH relate to patterns of positive and negative selection during tumour evolution. We observe frequent copy number-independent allele-specific expression that is linked to epigenomic dysfunction. Allele-specific expression can also result in genomic–transcriptomic parallel evolution, which converges on cancer gene disruption. We extract signatures of RNA single-base substitutions and link their aetiology to the activity of the RNA-editing enzymes ADAR and APOBEC3A, thereby revealing otherwise undetected ongoing APOBEC activity in tumours. Characterizing the transcriptomes of primary–metastatic tumour pairs, we combine multiple machine-learning approaches that leverage genomic and transcriptomic variables to link metastasis-seeding potential to the evolutionary context of mutations and increased proliferation within primary tumour regions. These results highlight the interplay between the genome and transcriptome in influencing ITH, lung cancer evolution and metastasis

    Antibodies against endogenous retroviruses promote lung cancer immunotherapy

    Get PDF
    B cells are frequently found in the margins of solid tumours as organized follicles in ectopic lymphoid organs called tertiary lymphoid structures (TLS). Although TLS have been found to correlate with improved patient survival and response to immune checkpoint blockade (ICB), the underlying mechanisms of this association remain elusive. Here we investigate lung-resident B cell responses in patients from the TRACERx 421 (Tracking Non-Small-Cell Lung Cancer Evolution Through Therapy) and other lung cancer cohorts, and in a recently established immunogenic mouse model for lung adenocarcinoma. We find that both human and mouse lung adenocarcinomas elicit local germinal centre responses and tumour-binding antibodies, and further identify endogenous retrovirus (ERV) envelope glycoproteins as a dominant anti-tumour antibody target. ERV-targeting B cell responses are amplified by ICB in both humans and mice, and by targeted inhibition of KRAS(G12C) in the mouse model. ERV-reactive antibodies exert anti-tumour activity that extends survival in the mouse model, and ERV expression predicts the outcome of ICB in human lung adenocarcinoma. Finally, we find that effective immunotherapy in the mouse model requires CXCL13-dependent TLS formation. Conversely, therapeutic CXCL13 treatment potentiates anti-tumour immunity and synergizes with ICB. Our findings provide a possible mechanistic basis for the association of TLS with immunotherapy response

    Clinical and laboratory evaluation of new immigrant and refugee children arriving in Greece

    No full text
    Abstract Background Migrant children are a population at risk for various health problems. Despite the increased inflow of migrants in Greece, data regarding their health assessment are lacking. This study aims to describe the clinical and certain laboratory characteristics and identify possible associations in a group of new immigrant (I) and refugee (R) children, arriving in Athens, Greece. Methods A prospective, cross- sectional study was performed in a migrant outpatient clinic of a tertiary Children’s hospital. All immigrant and refugee children, examined to obtain a health certificate, within 3 months of their arrival in the country, were enrolled. Clinical and laboratory information was collected in a pre- designed form. We applied multiple logistic regression models to investigate the association between the child’s status (immigrant vs refugee) and health indicators controlling for possible confounding effects, mainly of age and area of origin. Results From 2010 to 2013, a total of 300 children (I/R:138/162) with a mean age of 7.08 (range 1–14) years were included. Overall, 79.3% presented unknown vaccination status, 21.3% dental and 7.3% additional clinical problems. Latent tuberculosis was identified in 2.7%, while anemia, low serum ferritin and eosinophilia were found in 13.7%, 17.3%, and 22.7% of subjects, respectively. 57.7% had protective antibodies to hepatitis B surface antigen (anti-HBs ≥ 10 IU/L) and 30.6% elevated blood lead levels (EBLLs). Immigrants had less likely unknown immunization (OR = 0.25, p < 0.001), but had increased odds of low ferritin (OR = 1.97, p = 0.043), EBLLs (OR = 2.97, p = 0.001) and protective anti-HBs (OR = 1.79, p = 0.03). Age was inversely associated with anemia (OR = 0.0.89, p = 0.017), low ferritin (OR = 0.91, p = 0.027), EBLLs (OR = 0.86, p = 0.001) or positive anti-HBs (OR = 0.92, p = 0.025). Children from Europe or Africa presented decreased probability of EBLLs (OR = 0.31, p = 0.001, and OR = 0.15, p = 0.005, respectively) compared to those from Asia. Conclusions New immigrant and refugee children presented distinct clinical problems and certain laboratory abnormalities. Some of these health issues differed according to their migration status, age and geographic area of origin. These findings provide evidence that may assist the optimal approach of this vulnerable population

    Genetic Insights from Consanguineous Cardiomyopathy Families

    Get PDF
    Inherited cardiomyopathies are a prevalent cause of heart failure and sudden cardiac death. Both hypertrophic (HCM) and dilated cardiomyopathy (DCM) are genetically heterogeneous and typically present with an autosomal dominant mode of transmission. Whole exome sequencing and autozygosity mapping was carried out in eight un-related probands from consanguineous Middle Eastern families presenting with HCM/DCM followed by bioinformatic and co-segregation analysis to predict the potential pathogenicity of candidate variants. We identified homozygous missense variants in TNNI3K, DSP, and RBCK1 linked with a dilated phenotype, in NRAP linked with a mixed phenotype of dilated/hypertrophic, and in KLHL24 linked with a mixed phenotype of dilated/hypertrophic and non-compaction features. Co-segregation analysis in family members confirmed autosomal recessive inheritance presenting in early childhood/early adulthood. Our findings add to the mutational spectrum of recessive cardiomyopathies, supporting inclusion of KLHL24, NRAP and RBCK1 as disease-causing genes. We also provide evidence for novel (recessive) modes of inheritance of a well-established gene TNNI3K and expand our knowledge of the clinical heterogeneity of cardiomyopathies. A greater understanding of the genetic causes of recessive cardiomyopathies has major implications for diagnosis and screening, particularly in underrepresented populations, such as those of the Middle East
    corecore