17 research outputs found
Disopyramide is a safe and effective treatment for children with obstructive hypertrophic cardiomyopathy
BACKGROUND: Left ventricular outflow tract obstruction (LVOTO) is present in 1/3 of children with Hypertrophic Cardiomyopathy (HCM). Disopyramide improves symptoms associated with LVOTO and delays surgical intervention in adults, but it is not licensed in children. AIM: To describe a single-centre thirty-year experience of using disopyramide to treat LVOTO-related symptoms in a paediatric HCM cohort. METHODS: Clinical data were collected for all patients meeting diagnostic criteria for HCM (<18 years) at the time of initiation, 6 months after, and last follow-up or end of disopyramide treatment. It included demographics, clinical history, 12‑lead electrocardiography, and echocardiography. Comparisons between baseline and 6 month follow up, and end of follow up respectively were performed. RESULTS: Fifty-one patients with HCM were started on disopyramide at a mean age 10.2±5.3 years. At 6 months, of those previously symptomatic, 33(86.8%) reported an improvement of symptoms and 12(31.6%) were asymptomatic. PR interval, corrected QT interval and maximal LVOT gradient had not significantly changed, but fewer participants were noted to have systolic anterior motion of the mitral valve 31 (72.1%) vs. 26 (57.80%). Patients were followed up for a median of 1.9 years (IQR 0.83-4.5). Nine patients (17.6%) reported side effects, and eleven patients (33.3%) with initial improvement in symptoms reported a return or worsening of symptoms requiring a change in medication (n = 4, 12.1%) or left ventricular septal myomectomy (n = 7, 21.2%) during follow up. CONCLUSION: Disopyramide is a safe and effective treatment for LVOTO-related symptoms in childhood obstructive HCM. Any delay in the need for invasive intervention, particularly during childhood, is of clear clinical benefit
Clinical Features and Natural History of Preadolescent Nonsyndromic Hypertrophic Cardiomyopathy
Childhood hypertrophic cardiomyopathy; Outcomes; PhenotypeMiocardiopatía hipertrófica infantil; Resultados; FenotipoMiocardiopatia hipertròfica infantil; Resultats; FenotipBackground
Up to one-half of childhood sarcomeric hypertrophic cardiomyopathy (HCM) presents before the age of 12 years, but this patient group has not been systematically characterized.
Objectives
The aim of this study was to describe the clinical presentation and natural history of patients presenting with nonsyndromic HCM before the age of 12 years.
Methods
Data from the International Paediatric Hypertrophic Cardiomyopathy Consortium on 639 children diagnosed with HCM younger than 12 years were collected and compared with those from 568 children diagnosed between 12 and 16 years.
Results
At baseline, 339 patients (53.6%) had family histories of HCM, 132 (20.9%) had heart failure symptoms, and 250 (39.2%) were prescribed cardiac medications. The median maximal left ventricular wall thickness z-score was 8.7 (IQR: 5.3-14.4), and 145 patients (27.2%) had left ventricular outflow tract obstruction. Over a median follow-up period of 5.6 years (IQR: 2.3-10.0 years), 42 patients (6.6%) died, 21 (3.3%) underwent cardiac transplantation, and 69 (10.8%) had life-threatening arrhythmic events. Compared with those presenting after 12 years, a higher proportion of younger patients underwent myectomy (10.5% vs 7.2%; P = 0.045), but fewer received primary prevention implantable cardioverter-defibrillators (18.9% vs 30.1%; P = 0.041). The incidence of mortality or life-threatening arrhythmic events did not differ, but events occurred at a younger age.
Conclusions
Early-onset childhood HCM is associated with a comparable symptom burden and cardiac phenotype as in patients presenting later in childhood. Long-term outcomes including mortality did not differ by age of presentation, but patients presenting at younger than 12 years experienced adverse events at younger ages.This work was supported by the British Heart Foundation (grant FS/16/72/32270) to Drs Norrish and Kaski. This work is (partly) funded by the National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre. Dr Norrish is supported by Great Ormond Street Hospital Children’s Charity. Drs Field and Kaski are supported by Max’s Foundation and Great Ormond Street Hospital Children’s Charity. Dr Kaski is supported by a Medical Research Council–National Institute for Health Research Clinical Academic Research Partnership award. This work was financially supported by the Foundation for Paediatric Research of Finland (Dr Ojala). Dr Fernandez has received speaker fees from Sanofi-Genzyme. Dr Kubus is supported by MH CZ – DRO, Motol University Hospital (00064203). All other authors have reported that they have no relationships relevant to the contents of this paper to disclose
Performance of the PRIMaCY sudden death risk prediction model for childhood hypertrophic cardiomyopathy: implications for implantable cardioverter-defibrillator decision-making
Aims:
The validated HCM Risk-Kids model provides accurate individualized estimates of sudden cardiac death risk in children with hypertrophic cardiomyopathy (HCM). A second validated model, PRIMaCY, also provides individualized estimates of risk, but its performance and clinical impact has not been independently investigated. The aim of this study was to investigate the clinical impact of using the PRIMaCY sudden cardiac death (SCD) risk model in childhood HCM.
//
Methods and results:
The estimated 5-year SCD risk was calculated for children meeting diagnostic criteria for HCM in a large single-centre cohort using PRIMaCY (clinical and genetic) and HCM Risk-Kids model, and model performance was assessed. Three hundred one patients [median age 10 (interquartile range 4–14)] were followed up for an average of 4.9 (±3.8) years, during which 30 (10.0%) reached the SCD or equivalent event endpoint. Harrell’s C-statistic for the clinical and genetic models was 0.66 [95% confidence interval (CI) 0.52–0.8] and 0.66 (95% CI 0.54–0.80) with a calibration slope of 0.19 (95% CI 0.04–0.54) and 0.26 (95% CI −0.03–0.62), respectively. The number needed to treat to potentially treat one life-threatening arrhythmia for the PRIMaCY clinical, PRIMaCY genetic, and HCM Risk-Kids models was 13.7, 14.5, and 9.4, respectively.
//
Conclusion:
Although PRIMaCY has a similar discriminatory ability to that reported for HCM Risk-Kids, estimated risk estimates did not correlate well with observed risk. A higher proportion of patients met implantable cardioverter-defibrillator thresholds using PRIMaCY model compared with HCM Risk-Kids. This has important clinical implications as these patients will be exposed to a lifetime risk of complications and inappropriate therapies
Natural history and outcomes in paediatric RASopathy-associated hypertrophic cardiomyopathy
Aims: This study aimed to describe the natural history and predictors of all-cause mortality and sudden cardiac death (SCD)/equivalent events in children with a RASopathy syndrome and hypertrophic cardiomyopathy (HCM). Methods and results: This is a retrospective cohort study from 14 paediatric cardiology centres in the United Kingdom and Ireland. We included children <18 years with HCM and a clinical and/or genetic diagnosis of a RASopathy syndrome [Noonan syndrome (NS), NS with multiple lentigines (NSML), Costello syndrome (CS), cardiofaciocutaneous syndrome (CFCS), and NS with loose anagen hair (NS-LAH)]. One hundred forty-nine patients were recruited [111 (74.5%) NS, 12 (8.05%) NSML, 6 (4.03%) CS, 6 (4.03%) CFCS, 11 (7.4%) Noonan-like syndrome, and 3 (2%) NS-LAH]. NSML patients had higher left ventricular outflow tract (LVOT) gradient values [60 (36–80) mmHg, P = 0.004]. Over a median follow-up of 197.5 [inter-quartile range (IQR) 93.58–370] months, 23 patients (15.43%) died at a median age of 24.1 (IQR 5.6–175.9) months. Survival was 96.45% [95% confidence interval (CI) 91.69–98.51], 90.42% (95% CI 84.04–94.33), and 84.12% (95% CI 75.42–89.94) at 1, 5, and 10 years, respectively, but this varied by RASopathy syndrome. RASopathy syndrome, symptoms at baseline, congestive cardiac failure (CCF), non-sustained ventricular tachycardia (NSVT), and maximal left ventricular wall thickness were identified as predictors of all-cause mortality on univariate analysis, and CCF, NSVT, and LVOT gradient were predictors for SCD or equivalent event. Conclusions: These findings highlight a distinct category of patients with Noonan-like syndrome with a milder HCM phenotype but significantly worse survival and identify potential predictors of adverse outcome in patients with RASopathy-related HCM
Clinical Features and Natural History of Preadolescent Nonsyndromic Hypertrophic Cardiomyopathy
BACKGROUND Up to one-half of childhood sarcomeric hypertrophic cardiomyopathy (HCM) presents before the age of 12 years, but this patient group has not been systematically characterized. OBJECTIVES The aim of this study was to describe the clinical presentation and natural history of patients presenting with nonsyndromic HCM before the age of 12 years. METHODS Data from the International Paediatric Hypertrophic Cardiomyopathy Consortium on 639 children diagnosed with HCM younger than 12 years were collected and compared with those from 568 children diagnosed between 12 and 16 years. RESULTS At baseline, 339 patients (53.6%) had family histories of HCM, 132 (20.9%) had heart failure symptoms, and 250 (39.2%) were prescribed cardiac medications. The median maximal left ventricular wall thickness z-score was 8.7 (IQR: 5.3-14.4), and 145 patients (27.2%) had left ventricular outflow tract obstruction. Over a median follow-up period of 5.6 years (IQR: 2.3-10.0 years), 42 patients (6.6%) died, 21 (3.3%) underwent cardiac transplantation, and 69 (10.8%) had life-threatening arrhythmic events. Compared with those presenting after 12 years, a higher proportion of younger patients underwent myectomy (10.5% vs 7.2%; P = 0.045), but fewer received primary prevention implantable cardioverter-defibrillators (18.9% vs 30.1%; P = 0.041). The incidence of mortality or life-threatening arrhythmic events did not differ, but events occurred at a younger age. CONCLUSIONS Early-onset childhood HCM is associated with a comparable symptom burden and cardiac phenotype as in patients presenting later in childhood. Long-term outcomes including mortality did not differ by age of presentation, but patients presenting at younger than 12 years experienced adverse events at younger ages. (C) 2022 The Authors. Published by Elsevier on behalf of the American College of Cardiology Foundation.Peer reviewe
Immunoglobulin, glucocorticoid, or combination therapy for multisystem inflammatory syndrome in children: a propensity-weighted cohort study.
BACKGROUND: Multisystem inflammatory syndrome in children (MIS-C), a hyperinflammatory condition associated with SARS-CoV-2 infection, has emerged as a serious illness in children worldwide. Immunoglobulin or glucocorticoids, or both, are currently recommended treatments. METHODS: The Best Available Treatment Study evaluated immunomodulatory treatments for MIS-C in an international observational cohort. Analysis of the first 614 patients was previously reported. In this propensity-weighted cohort study, clinical and outcome data from children with suspected or proven MIS-C were collected onto a web-based Research Electronic Data Capture database. After excluding neonates and incomplete or duplicate records, inverse probability weighting was used to compare primary treatments with intravenous immunoglobulin, intravenous immunoglobulin plus glucocorticoids, or glucocorticoids alone, using intravenous immunoglobulin as the reference treatment. Primary outcomes were a composite of inotropic or ventilator support from the second day after treatment initiation, or death, and time to improvement on an ordinal clinical severity scale. Secondary outcomes included treatment escalation, clinical deterioration, fever, and coronary artery aneurysm occurrence and resolution. This study is registered with the ISRCTN registry, ISRCTN69546370. FINDINGS: We enrolled 2101 children (aged 0 months to 19 years) with clinically diagnosed MIS-C from 39 countries between June 14, 2020, and April 25, 2022, and, following exclusions, 2009 patients were included for analysis (median age 8·0 years [IQR 4·2-11·4], 1191 [59·3%] male and 818 [40·7%] female, and 825 [41·1%] White). 680 (33·8%) patients received primary treatment with intravenous immunoglobulin, 698 (34·7%) with intravenous immunoglobulin plus glucocorticoids, 487 (24·2%) with glucocorticoids alone; 59 (2·9%) patients received other combinations, including biologicals, and 85 (4·2%) patients received no immunomodulators. There were no significant differences between treatments for primary outcomes for the 1586 patients with complete baseline and outcome data that were considered for primary analysis. Adjusted odds ratios for ventilation, inotropic support, or death were 1·09 (95% CI 0·75-1·58; corrected p value=1·00) for intravenous immunoglobulin plus glucocorticoids and 0·93 (0·58-1·47; corrected p value=1·00) for glucocorticoids alone, versus intravenous immunoglobulin alone. Adjusted average hazard ratios for time to improvement were 1·04 (95% CI 0·91-1·20; corrected p value=1·00) for intravenous immunoglobulin plus glucocorticoids, and 0·84 (0·70-1·00; corrected p value=0·22) for glucocorticoids alone, versus intravenous immunoglobulin alone. Treatment escalation was less frequent for intravenous immunoglobulin plus glucocorticoids (OR 0·15 [95% CI 0·11-0·20]; p<0·0001) and glucocorticoids alone (0·68 [0·50-0·93]; p=0·014) versus intravenous immunoglobulin alone. Persistent fever (from day 2 onward) was less common with intravenous immunoglobulin plus glucocorticoids compared with either intravenous immunoglobulin alone (OR 0·50 [95% CI 0·38-0·67]; p<0·0001) or glucocorticoids alone (0·63 [0·45-0·88]; p=0·0058). Coronary artery aneurysm occurrence and resolution did not differ significantly between treatment groups. INTERPRETATION: Recovery rates, including occurrence and resolution of coronary artery aneurysms, were similar for primary treatment with intravenous immunoglobulin when compared to glucocorticoids or intravenous immunoglobulin plus glucocorticoids. Initial treatment with glucocorticoids appears to be a safe alternative to immunoglobulin or combined therapy, and might be advantageous in view of the cost and limited availability of intravenous immunoglobulin in many countries. FUNDING: Imperial College London, the European Union's Horizon 2020, Wellcome Trust, the Medical Research Foundation, UK National Institute for Health and Care Research, and National Institutes of Health
The evolution of lung cancer and impact of subclonal selection in TRACERx
Lung cancer is the leading cause of cancer-associated mortality worldwide. Here we analysed 1,644 tumour regions sampled at surgery or during follow-up from the first 421 patients with non-small cell lung cancer prospectively enrolled into the TRACERx study. This project aims to decipher lung cancer evolution and address the primary study endpoint: determining the relationship between intratumour heterogeneity and clinical outcome. In lung adenocarcinoma, mutations in 22 out of 40 common cancer genes were under significant subclonal selection, including classical tumour initiators such as TP53 and KRAS. We defined evolutionary dependencies between drivers, mutational processes and whole genome doubling (WGD) events. Despite patients having a history of smoking, 8% of lung adenocarcinomas lacked evidence of tobacco-induced mutagenesis. These tumours also had similar detection rates for EGFR mutations and for RET, ROS1, ALK and MET oncogenic isoforms compared with tumours in never-smokers, which suggests that they have a similar aetiology and pathogenesis. Large subclonal expansions were associated with positive subclonal selection. Patients with tumours harbouring recent subclonal expansions, on the terminus of a phylogenetic branch, had significantly shorter disease-free survival. Subclonal WGD was detected in 19% of tumours, and 10% of tumours harboured multiple subclonal WGDs in parallel. Subclonal, but not truncal, WGD was associated with shorter disease-free survival. Copy number heterogeneity was associated with extrathoracic relapse within 1 year after surgery. These data demonstrate the importance of clonal expansion, WGD and copy number instability in determining the timing and patterns of relapse in non-small cell lung cancer and provide a comprehensive clinical cancer evolutionary data resource
The evolution of non-small cell lung cancer metastases in TRACERx
Metastatic disease is responsible for the majority of cancer-related deaths. We report the longitudinal evolutionary analysis of 126 non-small cell lung cancer (NSCLC) tumours from 421 prospectively recruited patients in TRACERx who developed metastatic disease, compared with a control cohort of 144 non-metastatic tumours. In 25% of cases, metastases diverged early, before the last clonal sweep in the primary tumour, and early divergence was enriched for patients who were smokers at the time of initial diagnosis. Simulations suggested that early metastatic divergence more frequently occurred at smaller tumour diameters (less than 8 mm). Single-region primary tumour sampling resulted in 83% of late divergence cases being misclassified as early, highlighting the importance of extensive primary tumour sampling. Polyclonal dissemination, which was associated with extrathoracic disease recurrence, was found in 32% of cases. Primary lymph node disease contributed to metastatic relapse in less than 20% of cases, representing a hallmark of metastatic potential rather than a route to subsequent recurrences/disease progression. Metastasis-seeding subclones exhibited subclonal expansions within primary tumours, probably reflecting positive selection. Our findings highlight the importance of selection in metastatic clone evolution within untreated primary tumours, the distinction between monoclonal versus polyclonal seeding in dictating site of recurrence, the limitations of current radiological screening approaches for early diverging tumours and the need to develop strategies to target metastasis-seeding subclones before relapse
Genomic–transcriptomic evolution in lung cancer and metastasis
Intratumour heterogeneity (ITH) fuels lung cancer evolution, which leads to immune evasion and resistance to therapy. Here, using paired whole-exome and RNA sequencing data, we investigate intratumour transcriptomic diversity in 354 non-small cell lung cancer tumours from 347 out of the first 421 patients prospectively recruited into the TRACERx study. Analyses of 947 tumour regions, representing both primary and metastatic disease, alongside 96 tumour-adjacent normal tissue samples implicate the transcriptome as a major source of phenotypic variation. Gene expression levels and ITH relate to patterns of positive and negative selection during tumour evolution. We observe frequent copy number-independent allele-specific expression that is linked to epigenomic dysfunction. Allele-specific expression can also result in genomic–transcriptomic parallel evolution, which converges on cancer gene disruption. We extract signatures of RNA single-base substitutions and link their aetiology to the activity of the RNA-editing enzymes ADAR and APOBEC3A, thereby revealing otherwise undetected ongoing APOBEC activity in tumours. Characterizing the transcriptomes of primary–metastatic tumour pairs, we combine multiple machine-learning approaches that leverage genomic and transcriptomic variables to link metastasis-seeding potential to the evolutionary context of mutations and increased proliferation within primary tumour regions. These results highlight the interplay between the genome and transcriptome in influencing ITH, lung cancer evolution and metastasis
Antibodies against endogenous retroviruses promote lung cancer immunotherapy
B cells are frequently found in the margins of solid tumours as organized follicles in ectopic lymphoid organs called tertiary lymphoid structures (TLS). Although TLS have been found to correlate with improved patient survival and response to immune checkpoint blockade (ICB), the underlying mechanisms of this association remain elusive. Here we investigate lung-resident B cell responses in patients from the TRACERx 421 (Tracking Non-Small-Cell Lung Cancer Evolution Through Therapy) and other lung cancer cohorts, and in a recently established immunogenic mouse model for lung adenocarcinoma. We find that both human and mouse lung adenocarcinomas elicit local germinal centre responses and tumour-binding antibodies, and further identify endogenous retrovirus (ERV) envelope glycoproteins as a dominant anti-tumour antibody target. ERV-targeting B cell responses are amplified by ICB in both humans and mice, and by targeted inhibition of KRAS(G12C) in the mouse model. ERV-reactive antibodies exert anti-tumour activity that extends survival in the mouse model, and ERV expression predicts the outcome of ICB in human lung adenocarcinoma. Finally, we find that effective immunotherapy in the mouse model requires CXCL13-dependent TLS formation. Conversely, therapeutic CXCL13 treatment potentiates anti-tumour immunity and synergizes with ICB. Our findings provide a possible mechanistic basis for the association of TLS with immunotherapy response