44 research outputs found

    Interference stabilization of autoionizing states in molecular N2N_2 studied by time- and angular-resolved photoelectron spectroscopy

    Get PDF
    An autoionizing resonance in molecular N2_2 is excited by an ultrashort XUV pulse and probed by a subsequent weak IR pulse, which ionizes the contributing Rydberg states. Time- and angular-resolved photoelectron spectra recorded with a velocity map imaging spectrometer reveal two electronic contributions with different angular distributions. One of them has an exponential decay rate of 20±520\pm5 fs, while the other one is shorter than 10 fs. This observation is interpreted as a manifestation of interference stabilization involving the two overlapping discrete Rydberg states. A formalism of interference stabilization for molecular ionization is developed and applied to describe the autoionizing resonance. The results of calculations reveal, that the effect of the interference stabilization is facilitated by rotationally-induced couplings of electronic states with different symmetry.Comment: 8 pages, 6 figure

    Magic numbers, excitation levels, and other properties of small neutral math clusters (N < 50)

    Get PDF
    The ground-state energies and the radial and pair distribution functions of neutral math clusters are systematically calculated by the diffusion Monte Carlo method in steps of one math atom from 3 to 50 atoms. In addition the chemical potential and the low-lying excitation levels of each cluster are determined with high precision. These calculations reveal that the “magic numbers” observed in experimental math cluster size distributions, measured for free jet gas expansions by nondestructive matter-wave diffraction, are not caused by enhanced stabilities. Instead they are explained in terms of an enhanced growth due to sharp peaks in the equilibrium concentrations in the early part of the expansion. These peaks appear at cluster sizes which can just accommodate one more additional stable excitation. The good agreement with experiment provides not only experimental confirmation of the energy level and the chemical potential calculations, but also evidence for a new mechanism which can lead to magic numbers in cluster size distributions. By accounting for the falloff of the radial density distributions at the surface and a size-dependent surface tension, the energy levels are demonstrated to be consistent with a modified Rayleigh model of surface excitations. The compressibility coefficient of these small clusters is found to be one order of magnitude smaller than the bulk [email protected]

    Femtosecond XUV induced dynamics of the methyl iodide cation

    Get PDF
    Ultrashort XUV wavelength-selected pulses obtained with high harmonic generation are used to study the dynamics of molecular cations with state-to-state resolution. We demonstrate this by XUV pump - IR probe experiments on CH3I+ cations and identify both resonant and non-resonant dynamics

    Interference stabilization of autoionizing states in molecular N2 studied by time- and angular-resolved photoelectron spectroscopy

    Get PDF
    An autoionizing resonance in molecular N2 is excited by an ultrashort XUV pulse and probed by a subsequent weak IR pulse, which ionizes the contributing Rydberg states. Time- and angular-resolved photoelectron spectra recorded with a velocity map imaging spectrometer reveal two electronic contributions with different angular distributions. One of them has an exponential decay rate of 20 ± 5 fs, while the other one is shorter than 10 fs. This observation is interpreted as a manifestation of interference stabilization involving the two overlapping discrete Rydberg states. A formalism of interference stabilization for molecular ionization is developed and applied to describe the autoionizing resonance. The results of calculations suggest, that the effect of the interference stabilization is facilitated by rotationally-induced couplings of electronic states with different symmetry

    Quantifying metabolic activity of Ascaris suum L3 using resazurin reduction

    Get PDF
    Background Helminth infections are an important public health problem in humans and have an even greater impact on domestic animal and livestock welfare. Current readouts for anthelmintic drug screening assays are stage development, migration, or motility that can be subjective, laborious, and low in throughput. The aim of this study was to apply and optimize a fluorometric technique using resazurin for evaluating changes in the metabolic activity of Ascaris suum third-stage larvae (L3), a parasite of high economic relevance in swine. Methods Ascaris suum L3 were mechanically hatched from 6- to 8-week embryonated and sucrose-gradient-enriched eggs. Resazurin dye and A. suum L3 were titrated in 96-well microtiter plates, and resazurin reduction activity was assessed by fluorometry after 24 h of incubation. Fluorescence microscopy was used to localize the resazurin reduction site within the larvae. Finally, we exposed A. suum L3 to various stress conditions including heat, methanol, and anthelmintics, and investigated their impact on larval metabolism through resazurin reduction activity. Results We show that the non-fluorescent dye resazurin is reduced inside vital A. suum L3 to fluorescent resorufin and released into the culture media. Optimal assay parameters are 100–1000 L3 per well, a resazurin concentration of 7.5 µg/ml, and incubation at 37 °C/5% CO2 for 24 h. An intact L2 sheath around the L3 of A. suum completely prevents the uptake of resazurin, while in unsheathed L3, the most intense fluorescence signal is observed along the larval midgut. L3 exposed to methanol or heat show a gradually decreased resazurin reduction activity. In addition, 24 h exposure to ivermectin at 0.625 µM, mebendazole at 5 µM, and thiabendazole from 10 to 100 µM significantly decreased larval metabolic activity by 55%, 73%, and 70% to 89%, respectively. Conclusions Together, our results show that both metabolic stressors and anthelmintic drugs significantly and reproducibly reduce the resazurin reduction activity of A. suum L3, making the proposed assay a sensitive and easy-to-use method to evaluate metabolic activity of A. suum L3 in vitro

    Retrieval of attosecond pulse ensembles from streaking experiments using mixed state time-domain ptychography

    Get PDF
    The electric field of attosecond laser pulses can be retrieved from laser-dressed photoionisation measurements, where electron wavepackets that result from single-photon ionisation by the attosecond pulse in the presence of a dressing field are produced. In case of fluctuating dressing laser and/or attosecond pulses, e.g. due to pulse-to-pulse fluctuations of the carrier envelope phase of the infrared laser pulse, commonly applied retrieval algorithms result in the erroneous extraction of the pulse fields. We present a mixed state time-domain ptychography algorithm for the retrieval of pulse ensembles from attosecond streaking experiments
    corecore