46 research outputs found

    Splicing en el MHC de clase III: caracterización y expresión de las isoformas del gen NFkBIL1 : estudio de su relación con artritis reumatoide

    Full text link
    Tesis doctoral inédita. Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Biología Molecular. Fecha de lectura: 02-07-201

    Exploratory optimisation of a LC-HRMS based analytical method for untargeted metabolomic screening of Cannabis Sativa L. through Data Mining

    Get PDF
    Background Recent increase in public acceptance of cannabis as a natural medical alternative for certain neurological pathologies has led to its approval in different regions of the world. However, due to its previous illegal background, little research has been conducted around its biochemical insights. Therefore, in the current framework, metabolomics may be a suitable approach for deepening the knowledge around this plant species. Nevertheless, experimental methods in metabolomics must be carefully handled, as slight modifications can lead to metabolomic coverage loss. Hence, the main objective of this work was to optimise an analytical method for appropriate untargeted metabolomic screening of cannabis. Results We present an empirically optimised experimental procedure through which the broadest metabolomic coverage was obtained, in which extraction solvents for metabolite isolation, chromatographic columns for LC-qOrbitrap analysis and plant-representative biological tissues were compared. By exploratory means, it was determined that the solvent combination composed of CHCl3:H2O:CH3OH (2:1:1, v/v) provided the highest number of features from diverse chemical classes, as it was a two-phase extractant. In addition, a reverse phase 2.6 μm C18 100 Å (150 × 3 mm) chromatographic column was determined as the appropriate choice for adequate separation and further detection of the diverse metabolite classes. Apart from that, overall chromatographic peak quality provided by each column was observed and the need for batch correction methods through quality control (QC) samples was confirmed. At last, leaf and flower tissues resulted to provide complementary metabolic information of the plant, to the detriment of stem tissue, which resulted to be negligible. Significance It was concluded that the optimised experimental procedure could significantly ease the path for future research works related to cannabis metabolomics by LC-HRMS means, as the work was based on previous plant metabolomics literature. Furthermore, it is crucial to highlight that an optimal analytical method can vary depending on the main objective of the research, as changes in the experimental factors can lead to different outcomes, regardless of whether the results are better or worse.This work was financially supported by the Education Department of the Basque Country as a consolidated group of the Basque Research System (IT1213-19) and by Sovereign Fields S.L., in the framework of the project Metabolomic study of Cannabis Sativa L. cultivations and determination of contaminants in medical cannabis plants

    Functional analyses of a novel splice variant in the CHD7 gene, found by next generation sequencing, Confirm Its pathogenicity in a Spanish patient and diagnose him with CHARGE syndrome

    Get PDF
    Mutations in CHD7 have been shown to be a major cause of CHARGE syndrome, which presents many symptoms and features common to other syndromes making its diagnosis difficult. Next generation sequencing (NGS) of a panel of intellectual disability related genes was performed in an adult patient without molecular diagnosis. A splice donor variant in CHD7 (c.5665 + 1G > T) was identified. To study its potential pathogenicity, exons and flanking intronic sequences were amplified from patient DNA and cloned into the pSAD® splicing vector. HeLa cells were transfected with this construct and a wild-type minigene and functional analysis were performed. The construct with the c.5665 + 1G > T variant produced an aberrant transcript with an insert of 63 nucleotides of intron 28 creating a premature termination codon (TAG) 25 nucleotides downstream. This would lead to the insertion of 8 new amino acids and therefore a truncated 1896 amino acid protein. As a result of this, the patient was diagnosed with CHARGE syndrome. Functional analyses underline their usefulness for studying the pathogenicity of variants found by NGS and therefore its application to accurately diagnose patients.This work was funded by Jesús de Gangoiti Barrera Foundation (FJGB15/005). The EAV laboratory is funded by projects of the Spanish Ministry of Economy and Competitiveness, National Plan for R & D 2013–2016, ISCIII (FIS: PI13/01749) co-financed by FEDER from Regional Development European Funds (European Union) and the project CSI090U14 of the Regional ministry of Education (ORDER EDU/122/2014) (Castilla y León, Spain). This study made use of data generated by the UK10K Project. Funding for the UK10K Project was provided by the Wellcome Trust under award WT091310.Peer reviewe

    Identification of germline cancer predisposition variants in pediatric sarcoma patients from somatic tumor testing

    Get PDF
    Genetic predisposition is an important risk factor for cancer in children and adolescents but detailed associations of individual genetic mutations to childhood cancer are still under intense investigation. Among pediatric cancers, sarcomas can arise in the setting of cancer predisposition syndromes. The association of sarcomas with these syndromes is often missed, due to the rarity and heterogeneity of sarcomas and the limited search of cancer genetic syndromes. This study included 43 pediatric and young adult patients with different sarcoma subtypes. Tumor profiling was undertaken using the Oncomine Childhood Cancer Research Assay (Thermo Fisher Scientific). Sequencing results were reviewed for potential germline alterations in clinically relevant genes associated with cancer predisposition syndromes. Jongmans´ criteria were taken into consideration for the patient selection. Fifteen patients were selected as having potential pathogenic germline variants due to tumor sequencing that identified variants in the following genes: CDKN2A, NF1, NF2, RB1, SMARCA4, SMARCB1 and TP53. The variants found in NF1 and CDKN2A in two different patients were detected in the germline, confirming the diagnosis of a cancer predisposition syndrome. We have shown that the results of somatic testing can be used to identify those at risk of an underlying cancer predisposition syndrome.This work was funded by Research Projects from Navarra Government (Ref. 54/2018), the Jesús de Gangoiti Barrera Foundation (FJGB18/004 and FJGB19/001), Asociación Pablo Ugarte APU (APU-osteosarcoma), La Cuadri del Hospi (BC/A/17/008), EITB Media AND BIOEF, SAU (BIO20/CI/015/BCB and BIO20/CI/011/BCB), Basque Government (2021111030) and Fundación La Caixa with Niños Contra el Cáncer. P.A.-P. is supported by a Basque Government fellowship (PRE_2021_2_0048)

    Identification and Functional Analysis of a Novel CTNNB1 Mutation in Pediatric Medulloblastoma

    Get PDF
    Medulloblastoma is the primary malignant tumor of the Central Nervous System (CNS) most common in pediatrics. We present here, the histological, molecular, and functional analysis of a cohort of 88 pediatric medulloblastoma tumor samples. The WNT-activated subgroup comprised 10% of our cohort, and all WNT-activated patients had exon 3 CTNNB1 mutations and were immunostained for nuclear β-catenin. One novel heterozygous CTNNB1 mutation was found, which resulted in the deletion of β-catenin Ser37 residue (ΔS37). The ΔS37 β-catenin variant ectopically expressed in U2OS human osteosarcoma cells displayed higher protein expression levels than wild-type β-catenin, and functional analysis disclosed gain-of-function properties in terms of elevated TCF/LEF transcriptional activity in cells. Our results suggest that the stabilization and nuclear accumulation of ΔS37 β-catenin contributed to early medulloblastoma tumorigenesis.This work was funded by Asociación Pablo Ugarte APU (BC/A/14/015), Pequerropa (BC/A/15/010), and the childhood cancer support Platform from EITB Media, SAU (BIO13/CI/016/BC). R.P. was funded by Ministerio de Economía y Competitividad (Spain and Fondo Europeo de Desarrollo Regional, grant number SAF2016-79847-R). C.E.N.-X. was funded by Instituto de Salud Carlos III (Spain and the European Social Fund+, grant number: CP20/00008). P.A.-P. was supported by a Basque Government fellowship (PRE_2020_2_0116)

    A nanobody-based tracer targeting DPP6 for non-invasive imaging of human pancreatic endocrine cells

    Get PDF
    There are presently no reliable ways to quantify endocrine cell mass (ECM) in vivo, which prevents an accurate understanding of the progressive beta cell loss in diabetes or following islet transplantation. To address this unmet need, we coupled RNA sequencing of human pancreatic islets to a systems biology approach to identify new biomarkers of the endocrine pancreas. Dipeptidyl-Peptidase 6 (DPP6) was identified as a target whose mRNA expression is at least 25-fold higher in human pancreatic islets as compared to surrounding tissues and is not changed by proinflammatory cytokines. At the protein level, DPP6 localizes only in beta and alpha cells within the pancreas. We next generated a high-affinity camelid single-domain antibody (nanobody) targeting human DPP6. The nanobody was radiolabelled and in vivo SPECT/CT imaging and biodistribution studies were performed in immunodeficient mice that were either transplanted with DPP6-expressing Kelly neuroblastoma cells or insulin-producing human EndoC-βH1 cells. The human DPP6-expressing cells were clearly visualized in both models. In conclusion, we have identified a novel beta and alpha cell biomarker and developed a tracer for in vivo imaging of human insulin secreting cells. This provides a useful tool to non-invasively follow up intramuscularly implanted insulin secreting cells

    Identification of germline cancer predisposition variants in pediatric sarcoma patients from somatic tumor testing

    Get PDF
    Genetic predisposition is an important risk factor for cancer in children and adolescents but detailed associations of individual genetic mutations to childhood cancer are still under intense investigation. Among pediatric cancers, sarcomas can arise in the setting of cancer predisposition syndromes. The association of sarcomas with these syndromes is often missed, due to the rarity and heterogeneity of sarcomas and the limited search of cancer genetic syndromes. This study included 43 pediatric and young adult patients with different sarcoma subtypes. Tumor profiling was undertaken using the Oncomine Childhood Cancer Research Assay (Thermo Fisher Scientific). Sequencing results were reviewed for potential germline alterations in clinically relevant genes associated with cancer predisposition syndromes. Jongmans¿ criteria were taken into consideration for the patient selection. Fifteen patients were selected as having potential pathogenic germline variants due to tumor sequencing that identified variants in the following genes: CDKN2A, NF1, NF2, RB1, SMARCA4, SMARCB1 and TP53. The variants found in NF1 and CDKN2A in two different patients were detected in the germline, confirming the diagnosis of a cancer predisposition syndrome. We have shown that the results of somatic testing can be used to identify those at risk of an underlying cancer predisposition syndrome

    MECHANISMS IN ENDOCRINOLOGY: Alternative splicing: the new frontier in diabetes research.

    No full text
    Type 1 diabetes (T1D) is a chronic autoimmune disease in which pancreatic β cells are killed by infiltrating immune cells and by cytokines released by these cells. This takes place in the context of a dysregulated dialogue between invading immune cells and target β cells, but the intracellular signals that decide β cell fate remain to be clarified. Alternative splicing (AS) is a complex post-transcriptional regulatory mechanism affecting gene expression. It regulates the inclusion/exclusion of exons into mature mRNAs, allowing individual genes to produce multiple protein isoforms that expand the proteome diversity. Functionally related transcript populations are co-ordinately spliced by master splicing factors, defining regulatory networks that allow cells to rapidly adapt their transcriptome in response to intra and extracellular cues. There is a growing interest in the role of AS in autoimmune diseases, but little is known regarding its role in T1D. In this review, we discuss recent findings suggesting that splicing events occurring in both immune and pancreatic β cells contribute to the pathogenesis of T1D. Splicing switches in T cells and in lymph node stromal cells are involved in the modulation of the immune response against β cells, while β cells exposed to pro-inflammatory cytokines activate complex splicing networks that modulate β cell viability, expression of neoantigens and susceptibility to immune-induced stress. Unveiling the role of AS in β cell functional loss and death will increase our understanding of T1D pathogenesis and may open new avenues for disease prevention and therapy.SCOPUS: re.jinfo:eu-repo/semantics/publishe

    Splicing-Disrupting Mutations in Inherited Predisposition to Solid Pediatric Cancer

    No full text
    The prevalence of hereditary cancer in children was estimated to be very low until recent studies suggested that at least 10% of pediatric cancer patients carry a germline mutation in a cancer predisposition gene. A significant proportion of pathogenic variants associated with an increased risk of hereditary cancer are variants affecting splicing. RNA splicing is an essential process involved in different cellular processes such as proliferation, survival, and differentiation, and alterations in this pathway have been implicated in many human cancers. Hereditary cancer genes are highly susceptible to splicing mutations, and among them there are several genes that may contribute to pediatric solid tumors when mutated in the germline. In this review, we have focused on the analysis of germline splicing-disrupting mutations found in pediatric solid tumors, as the discovery of pathogenic splice variants in pediatric cancer is a growing field for the development of personalized therapies. Therapies developed to correct aberrant splicing in cancer are also discussed as well as the options to improve the diagnostic yield based on the increase in the knowledge in splicing
    corecore