41 research outputs found

    Population Structure Analyses Provide Insight into the Source Populations Underlying Rural Isolated Communities in Illinois

    Get PDF
    We have previously hypothesized that relatively small and isolated rural communities may experience founder effects, defined as the genetic ramifications of small population sizes at the time of a community’s establishment. To explore this, we used an Illumina Infinium Omni2.5Exome-8 chip to collect data from 157 individuals from four Illinois communities, three rural and one urban. Genetic diversity estimates of 999,259 autosomal markers suggested that the reduction in heterozygosity due to shared ancestry was approximately 0, indicating a randomly mating population. An eigenanalysis, which is similar to a principal component analysis but ran on a genetic coancestry matrix, conducted in the SNPRelate R package revealed that the majority of these individuals formed one cluster with a few putative outliers obscuring population variation. An additional eigenanalysis on the same markers in a combined data set including the 2,504 individuals in the 1000 Genomes database found that most of the 157 Illinois individuals clustered into one group in close proximity to individuals of European descent. A final eigenanalysis of the Illinois individuals with the 503 individuals of European descent (within the 1000 Genomes Project) revealed two clusters of individuals and likely two source populations; one British and one consisting of multiple European subpopulations. We therefore demonstrate the feasibility of examining genetic relatedness across Illinois populations and assessing the number of source populations using publicly available databases. When assessed, it becomes possible for population structure information to contribute to the understanding of genetic history in rural populations

    Nigerian SNP data (filtered)

    No full text
    In vcf format, gzipped. Filter for minor allele frequency > 0.0

    Global SNP data

    No full text
    In vcf format, gzippe

    An Integrated Genotyping-by-Sequencing Polymorphism Map for Over 10,000 Sorghum Genotypes

    No full text
    Mining crop genomic variation can facilitate the genetic research of complex traits and molecular breeding. In sorghum [ L. (Moench)], several large-scale single nucleotide polymorphism (SNP) datasets have been generated using genotyping-by-sequencing of KI reduced representation libraries. However, data reuse has been impeded by differences in reference genome coordinates among datasets. To facilitate reuse of these data, we constructed and characterized an integrated 459,304-SNP dataset for 10,323 sorghum genotypes on the version 3.1 reference genome. The SNP distribution showed high enrichment in subtelomeric chromosome arms and in genic regions (48% of SNPs) and was highly correlated ( = 0.82) to the distribution of KI restriction sites. The genetic structure reflected population differences by botanical race, as well as familial structure among recombinant inbred lines (RILs). Faster linkage disequilibrium decay was observed in the diversity panel than in the RILs, as expected, given the greater opportunity for recombination in diverse populations. To validate the quality and utility of the integrated SNP dataset, we used genome-wide association studies (GWAS) of genebank phenotype data, precisely mapping several known genes (e.g and ) and identifying novel associations for other traits. We further validated the dataset with GWAS of new and published plant height and flowering time data in a nested association mapping population, precisely mapping known genes and identifying epistatic interactions underlying both traits. These findings validate this integrated SNP dataset as a useful genomics resource for sorghum genetics and breeding

    Nigerian SNP data (unfiltered)

    No full text
    In vcf format, gzipped. Not filtered for minor allele frequency

    Data from: Genomic signatures of adaptation to a precipitation gradient in Nigerian sorghum

    No full text
    Evolution of plants under climatic gradients may lead to clinal adaptation. Understanding the genomic basis of clinal adaptation in crops species could facilitate breeding for climate resilience. We investigated signatures of clinal adaptation in the cereal crop sorghum (Sorghum bicolor L. [Moench]) to the precipitation gradient in West Africa using a panel (n = 607) of sorghum accessions from diverse agroclimatic zones of Nigeria. Significant correlations were observed between common-garden phenotypes of three putative climate-adaptive traits (flowering time, plant height, and panicle length) and climatic variables. The panel was characterized at >400,000 single nucleotide polymorphisms (SNPs) using genotyping-by-sequencing (GBS). Redundancy analysis indicated that a small proportion of SNP variation can be explained by climate (1%), space (1%), and climate collinear with space (3%). Discriminant analysis of principal components identified three genetic groups that are distributed differently along the precipitation gradient. Genome-wide association studies were conducted with phenotypes and three climatic variables (annual mean precipitation, precipitation in the driest quarter, and annual mean temperature). There was no overall enrichment of associations near a priori candidate genes implicated in flowering time, height, and inflorescence architecture in cereals, but several significant associations were found near a priori candidates including photoperiodic flowering regulators SbCN12 and Ma6. Together, the findings suggest that a small (3%) but significant proportion of nucleotide variation in Nigerian sorghum landraces reflects clinal adaptation along the West African precipitation gradient

    Transcriptome‐wide expression landscape and starch synthesis pathway co‐expression network in sorghum

    No full text
    Abstract The gene expression landscape across different tissues and developmental stages reflects their biological functions and evolutionary patterns. Integrative and comprehensive analyses of all transcriptomic data in an organism are instrumental to obtaining a comprehensive picture of gene expression landscape. Such studies are still very limited in sorghum, which limits the discovery of the genetic basis underlying complex agricultural traits in sorghum. We characterized the genome‐wide expression landscape for sorghum using 873 RNA‐sequencing (RNA‐seq) datasets representing 19 tissues. Our integrative analysis of these RNA‐seq data provides the most comprehensive transcriptomic atlas for sorghum, which will be valuable for the sorghum research community for functional characterizations of sorghum genes. Based on the transcriptome atlas, we identified 595 housekeeping genes (HKGs) and 2080 tissue‐specific expression genes (TEGs) for the 19 tissues. We identified different gene features between HKGs and TEGs, and we found that HKGs have experienced stronger selective constraints than TEGs. Furthermore, we built a transcriptome‐wide co‐expression network (TW‐CEN) comprising 35 modules with each module enriched in specific Gene Ontology terms. High‐connectivity genes in TW‐CEN tend to express at high levels while undergoing intensive selective pressure. We also built global and seed‐preferential co‐expression networks of starch synthesis pathways, which indicated that photosynthesis and microtubule‐based movement play important roles in starch synthesis. The global transcriptome atlas of sorghum generated by this study provides an important functional genomics resource for trait discovery and insight into starch synthesis regulation in sorghum

    Supplementary Material for Olatoye et al., 2018

    No full text
    Supplemental figures and files for "Genomic signatures of adaptation to a precipitation gradient in Nigerian sorghum
    corecore