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Abstract 

We have previously hypothesized that relatively small and isolated rural communities may 

experience founder effects, defined as the genetic ramifications of small population sizes at the 

time of a community’s establishment. To explore this, we used an Illumina Infinium 

Omni2.5Exome-8 chip to collect data from 157 individuals from four Illinois communities, three 

rural and one urban. Genetic diversity estimates of 999,259 autosomal markers suggested that the 

reduction in heterozygosity due to shared ancestry was approximately 0, indicating a randomly 

mating population. An eigenanalysis, which is similar to a principal component analysis but ran 

on a genetic coancestry matrix, conducted in the SNPRelate R package revealed that the majority 

of these individuals formed one cluster with a few putative outliers obscuring population 

variation. An additional eigenanalysis on the same markers in a combined data set including the 

2,504 individuals in the 1000 Genomes database found that most of the 157 Illinois individuals 

clustered into one group in close proximity to individuals of European descent. A final 

eigenanalysis of the Illinois individuals with the 503 individuals of European descent (within the 

1000 Genomes Project) revealed two clusters of individuals and likely two source populations; 

one British and one consisting of multiple European subpopulations. We therefore demonstrate 

the feasibility of examining genetic relatedness across Illinois populations and assessing the 

number of source populations using publicly available databases. When assessed, it becomes 
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possible for population structure information to contribute to the understanding of genetic history 

in rural populations. 
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Two key characteristics of many rural communities in the US Midwest is that they were founded 

several hundred years ago, and that little migration has occurred in comparison with similar 

communities in Africa, Asia, and Europe (described in JENKINS et al. 2016). While many non-

genetic factors may explain a substantial amount of increased incidence of certain diseases in 

these rural communities (see BEFORT et al. 2012; HINES AND MARKOSSIAN 2012; and HENRY et 

al. 2014 for specific examples), quantification of a possible genetic predisposition to diseases in 

such communities could assist efforts to account for and minimize disease risk. It is therefore 

critical to compare and contrast genetic characteristics of rural populations to those from urban 

populations. This will particularly enable the testing of our hypothesis that small and isolated 

rural communities may experience genetic founder effects to a greater extent than their more 

urban peers (JENKINS et al. 2016). Such founder effects may influence disease susceptibility and 

have long lasting impacts (RUDAN 1999). We hypothesize that a small town, founded by a small 

number of individuals and relatively geographically isolated, can remain affected by the initial 

founder effect over hundreds of years. Similar examples have been observed previously (e.g. the 

island of Sardinia), where geography presents a physical barrier to travel (PORTAS et al. 2010).  

Researchers can use genetic data to estimate how closely related individuals in a 

population are to each other, as well as to determine if members of a rural community have a 

single or multiple source population(s) (the location of the population’s origin; FALUSH et al. 

2003; WANG et al. 2007). Determining if there is more than one source population is an 

important step for examining population structure; multiple source populations would suggest 

higher initial genetic diversity than a single source population and minimize any impacts of a 

founder effect. The ability to use genetic data to quantify subpopulation structure is an important 

factor in population studies (WACHOLDER et al. 2000; THOMAS AND WITTE 2002; CAMPBELL et 
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al. 2005). Population structure analyses can be performed with large numbers of single 

nucleotide polymorphisms (SNPs) using small amounts of DNA and commercially available 

SNP chips. Given the use of genetic data from such chips in previous research (VAAGS et al. 

2012; TERAO et al. 2013; DE VIVO et al. 2014; MAYBA et al. 2014; MACHIELA et al. 2016), it 

appears that they are well-suited for quantifying subpopulation structure in rural isolated 

populations and hence provide insight into the impact of founder effects and isolation on current 

community genetic diversity. 

Genome-wide marker obtained from SNP chips can also be used to obtain measures of 

genetic diversity. Such measures include average gene diversity over loci, which estimates 

overall population diversity (NEI 1987). Population similarity can be measured using Wright’s 

indices including FIS, which examines the reduction in heterozygosity in a population due to 

shared ancestry (WRIGHT 1950). This measure can help estimate the relatedness of individuals 

within a population. Typical values of FIS in European population have been reported in German 

(-0.0010-0.0108) (STEFFENS et al. 2006) and several Iberian populations: Basques (0.0000), 

Navarre (0.015), Pass Valley (0.0144) (CARDOSO et al. 2017). Thus, measures of average gene 

diversity over loci and FIS could indicate if rural populations have less diversity and/or appear to 

exhibit genetic drift, including a genetic bottleneck or founder effect, compared to other world 

populations. 

Beyond measuring average gene diversity and FIS, we speculate that another critical 

analysis leading to accurate quantification of subpopulation structure in rural populations would 

be to compare their genetic relationships with various populations throughout the world. Such an 

analysis could facilitate the identification of source populations and provide insight into the 

presence of founder effects. The undertaking of such an endeavor is now possible given the 
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availability of whole-genome sequenced data sets such as those from the 1000 Genomes Project 

(1KGP), PopRes, Ancestry DNA, the Human Genome Diversity Project, and HapMap projects 

(ANCESTRYDNA ; CANN et al. 2002; INTERNATIONAL HAPMAP 2003; NELSON et al. 2008; 

GENOMES PROJECT et al. 2015). Genome-wide markers segregating in both the rural populations 

and these whole-genome sequenced data sets could then be analyzed to quantify genetic 

relationships and identify source populations. Approaches such as STRUCTURE (PRITCHARD et 

al. 2000), principal component analysis (PRICE et al. 2006), and ADMIXTURE (ALEXANDER et 

al. 2009) are adequate for using genome-wide markers to infer which subpopulations are present 

in the resulting combined data sets. However, advances in methodologies, including the 

eigenanalysis approach of ZHENG AND WEIR (2016), now make it possible to characterize which 

ancestral populations underlie the individuals living in rural communities by directly 

incorporating the probabiltiy of markers being identical by descent (IBD) into the calculations.  

The purpose of this study was to examine whole-genome SNP data from individuals from 

three rural and one urban population in Illinois, USA and characterize their genetic properties, 

including genetic diversity and relatedness. To achieve this, we characterized the genetic 

properties of these individuals, and then compared them to the 1KGP database.  We 

hypothesized that such an assessment could shed light on potential founder effects and suggest 

genetic differentiation from more urban populations.  

 

Materials and Methods 

Illinois IsoPop Data Set 

The individuals comprising the Isolated Populations Project (IsoPop) data set, as well as the 

methods used to recruit them, have been described elsewhere (DEAN 2017). Briefly, 176 
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individuals were recruited from three rural communities (70 individuals from community #1, 30 

from community #2, and 41 from community #3) and one urban community (35 individuals; 

community #4) in Illinois. These three rural communities were thought to have been settled in 

the past 300 years and are relatively isolated (JENKINS et al. 2016). The three rural communities 

were between 100 and 400 miles from each other, with the nearest urban centers to each 

community being located between 30 and 60 miles away (Wiley Jenkins, personal 

communication). In addition to providing genealogical information and saliva samples, the 

participants took surveys and engaged in community forums. The genealogy information was 

used to remove individuals that were first degree relatives with an already-recruited participant 

so as to not artificially inflate the degree of relatedness within the groups. This project was 

approved by the SIUSOM IRB (Springfield Committee for Research Involving Human Subjects; 

#15-328) and all participants provided informed consent. 

 

DNA Extraction and Marker Identification of IsoPop Individuals 

Extraction of DNA was carried out using an Oragene® prepIT-L2P kit (DNA Genotek) 

following the standard protocol with a few modifications. Incubation occurred in a heat block for 

between 2-24 hours (protocol suggested two hours of incubation). Rehydration of the DNA 

pellets occurred by incubating at 50° C for an hour or more as needed. Sample concentration was 

assessed using the Qubit™ assay (ThermoFisher). The average DNA concentration obtained was 

89.43 µg/ml with a range of 0.281-500 µg/ml. All samples, their population, and DNA 

concentration are listed in Supplementary Table 1.  

Samples were aliquoted into separate tubes and taken to the Keck Biotechnology 

Sequencing Center at the University of Illinois at Urbana-Champaign. A water sample was 
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included in the run to assess contamination, had a call rate of 0.4522, and was removed from 

analyses. Next, DNA samples were run on Illumina Infinium Omni2.5Exome-8 Bead chips 

(Illumina Inc, San Diego, CA) according to the Illumina LCG Assay Protocol (Part#15023139, 

Rev. D). Sequencing was carried out on the Illumina iScan to genotype 2,612,357 markers from 

the human genome. Sample results were viewed in Genome Studio and the “positive/negative” 

column was exported using a Dell PC with 64GB RAM. We removed a total of 19 individuals  

that either had a call rate of less than 0.90 as suggested by other studies (VERDU et al. 2014), or 

were first degree relatives to another individual (as reported by genealogical data), resulting in a 

total of 157 IsoPop individuals that were analyzed. 

 

1KGP Database 

Genomic data from the 1KGP consists of 2,504 individuals from 26 subpopulations across five 

continents and has been previously described (BIRNEY AND SORANZO 2015; GENOMES PROJECT 

et al. 2015). In brief, the 1KGP investigators sampled adult, “legally competent” individuals who 

are not from vulnerable or identifiable populations, using protocols that were in accordance with 

standard ethical guidelines (internationalgenome.org). Individuals in the database were self-

reported to be healthy, and gave their gender and ethnicity. The entirety of genomic data from 

the 1KGP contain 88 million variant sites (GENOMES PROJECT et al. 2015) and was collected 

using whole-genome sequencing. 

 

Computational Methods 

To quantify trends of population structure between and within the IsoPop population and the 

individuals in the 1KGP, we first obtained a subset of informative SNPs. The raw IsoPop data 
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generated from Genome Studio were exported as tables. These tables were loaded into RStudio 

using the data.table package where insertions and deletions were removed, as well as genotypes 

with a call rate < 90%  (RStudio® 2015). The 1KGP data were downloaded at ftp://ftp-

trace.ncbi.nih.gov/1000genomes/ftp/release/20130502/ (shown in Figure 1). In order to match 

IsoPop with 1KGP data set, only SNPs on the forward strand were kept. Additionally, support 

files provided by Illumina (https://support.illumina.com/downloads.html) were used to convert 

SNP IDs into the reference SNP ID number. None of the individuals exceeded a threshold of 

10% missing data. This data set was then converted into HapMap format and TASSEL 

(BRADBURY et al. 2007) was used to convert these data to VCF format. Next, PLINK (PURCELL 

et al. 2007) was used to remove SNPs with more than two alleles or more than 5% missing data. 

The reference allele was converted to the reference genome GRCh37 using PLINK 2.0. The 

resulting IsoPop data set used for subsequent analysis was composed of 157 individuals and 

999,259 autosomal SNPs. 

 

Genetic Diversity Estimates 

Using the HapMap formatted files generated in RStudio, TASSEL (BRADBURY et al. 2007) was 

used to convert the files to VCF file format, and finally PGDSpider (LISCHER AND EXCOFFIER 

2012) was used to convert to Arlequin project format (EXCOFFIER AND LISCHER 2010). The 

program Arlequin version 3.5.2.2 was used to calculate FIS and average gene diversity using the 

approach of NEI (1987) across each marker and averaged for each chromosome. This was done 

to assess how genetically related these populations are to each other and potentially parse out 

founder effects. These FIS values were calculated and graphed along the chromosomes for both 

the IsoPop and 1KGP individuals using VCFtools (DANECEK et al. 2011).  



Pre-print version. Visit http://digitalcommons.wayne.edu/humbiol/ after publication to acquire the final version. 

 

Eigenanalysis Using EIGMIX 

The procedure described in ZHENG AND WEIR (2016) was used to assess the presence of source 

populations in the IsoPop data set. In summary, this eigenanalysis differs from a traditional 

principal component analysis in that a coancestry matrix from the SNP data is used. This analysis 

was conducted on three different subsets of the data, the first being the data comprising of only 

the 157 IsoPop individuals. The procedure was conducted a second time on the combined IsoPop 

data set and the 2,504 individuals from the 1KGP data set. Finally, this procedure was repeated 

using the IsoPop data set and the subset of 503 individuals in the 1KGP data set from five 

European subpopulations. This analysis was conducted using the SNPRelate package in R. All 

scripts used for these analyses are publicly available at https://github.com/AmandaO8, and the 

coancestry matrix of all individuals used in this analysis is presented as Supplementary File 1 

and visualized in Supplementary Figure 1. 

 

Results 

Genetic Diversity of IsoPop Individuals Are Comparable to Other European Populations 

Estimates of genetic diversity in the IsoPop individuals for each chromosome can be found in 

Supplementary Table 2. The observed FIS values were all near 0, with only chromosomes 8 and 9 

having positive values, indicating that there has been random mating in these populations. By 

population, average gene diversity (using the approach described in NEI 1987) over loci values 

are all close to 0.3 for each chromosome. These values are similar to other European populations 

and suggest that the IsoPop individuals are as genetically diverse as a typical population of 

European descent.  
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Using the same 999,259 SNPs considered in the IsoPop data set, FIS values were also 

calculated for the 1KGP individuals, and the results are graphed in Figure 2. This enabled the 

direct comparison of heterozygosity between the IsoPop individuals and the 1KGP individuals. 

The IsoPop populations had smaller FIS values than the full set of 2,504 1KGP individuals, 

suggesting lower levels of heterozygosity. However, the results also show that the distribution of 

FIS values among the 503 1KGB individuals from five European subpopulations was similar to 

those of the four IsoPop communities. This suggests that the IsoPop individuals are less 

genetically diverse than individuals in the 1KGP as a whole, but similar to the 1KGP subset of 

individuals from European-descended populations.  

 

Comparison with 1KGP Data Suggest Multiple Source Populations from Europe 

To test for the presence of observable founder effects among the IsoPop populations, we 

conducted an eigenanalysis of 999,259 autosomal genome-wide markers that segregated among 

these individuals (Figure 3; Supplementary Figures 2-5). The majority of IsoPop individuals 

were in close proximity to each other on the plot of the first two eigenvectors, with four 

individuals far removed from the main cluster of individuals. Thus, all but four of the individuals 

(two from community #1, and two from community # 3; both of these communities are rural) in 

the IsoPop data set cluster together, suggesting that the majority of individuals are descended 

from a single source population and remaining four individuals are likely from two other source 

populations. Even with the removal of these four observations, the majority of individuals still 

cluster with each other (Figure 3). The two sets of individuals outside of the main cluster that 

group with each other are respectively from the same communities, suggesting the possibility of  

there being some individuals who are related and did not report it or were unaware. 
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Unexpectedly, the urban population does not appear to be any more diverse than the rural 

populations. 

To further assess the genetic relatedness between the IsoPop individuals, we next 

conducted an eigenanalysis on the same set of 999,259 markers using the IsoPop data set 

combined with the 2,504 individuals from the 1KGP database. The resulting plot of the first two 

eigenvalues (Figure 4) revealed that the majority of the IsoPop individuals formed one cluster. 

Additional plots from this analysis are included as Supplementary Figures 6-8. This cluster 

overlaps with the 1KGP European individuals and is furthest from the 1KGP individuals with 

Asian and African ancestry. This result suggests that IsoPop individuals are a) more closely 

related to each other than to other world populations, and b) that their source population is most 

likely Europe. 

A final eigenanalysis was conducted with the IsoPop individuals and the 503 individuals 

of European descent from the 1KGP. The corresponding plot summarizing results from the first 

two eigenvalues (Figure 5) had three main groups and three outlier individuals. Additional plots 

from this analysis are included as Supplementary Figures 9-11. Many IsoPop individuals from 

each population cluster with those of Great Britain, including all individuals of the urban 

population (community #4). Additionally, many individuals from the rural populations 

(communities #1, #2, and #3) group with people of Northern and Western European ancestry 

living in Utah, Finland, Spain, and Tuscany (CEU, FIN, IBS, and TSI, respectively). These more 

refined results supersede the immediately previous findings from the original eigenanalysis by 

suggesting that the rural populations have multiple European source populations and likely had 

several founding groups. This also indicates that the urban population (community #4) only has 

Great Britain as a source population and might be less diverse than the rural populations. 
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Discussion 

The use of genomic markers from high-throughput genotyping data to compare the relatedness 

between individuals in rural communities to those in publicly available databases could help 

identify founder effects and source populations. To assess the capability of such an approach, we 

analyzed genetic data from 157 individuals living in four communities in Illinois (three of which 

were rural) and used state-of-the-art statistical approaches to compare their genetic similarity to 

the 2,504 individuals comprising the 1KGP database. Given the novelty of these IsoPop data, 

these results provided an initial glance into the genetic diversity underlying these individuals. In 

particular, our first finding was that not only were the three rural communities indistinct from 

each other, but that they were also indistinct from the urban ‘control’ population. This indicates 

that genetic founder effects may not be present in these isolated rural communities, and that 

community endogamy is not so reduced in rural areas as to influence observable genetic 

differences compared to a more urban area.  

We next examined the IsoPop data in relation to the globally-representative 1KGP data 

set. Our first finding was that the eigenanalysis primarily grouped the IsoPop individuals into 

one cluster (Figure 4) which was closest to the subset of 1KGP European individuals, suggesting 

the IsoPop are more closely related to Europeans than other groups. Our results are also 

consistent with our theoretical expectations based on the genealogical data suggesting that the 

majority of IsoPop individuals are descended from people of European ancestry. Further 

evidence of the presence of a single European source population is provided by the respective 

plots of the first two eigenvectors clustering most of the IsoPop individuals into their own group, 

suggesting that the vast majority of these IsoPop individuals are closely related (Figure 3, 
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Supplementary Figures 3-5). However, the individuals situated distantly from the cluster could 

be obscuring some of the variation in these populations.  

The plot of the first two eigenvectors from the eigenanalysis of the IsoPop and the 1KGP 

European subpopulation suggests genetic similarity with British, Finnish, Spanish, Tuscan, and 

people of Northern and Western European ancestry living in Utah (Figure 5). While Figure 4 

(IsoPop + total 1KGP) suggests one European source population, Figure 5 (IsoPop + 1KGP 

European subset) suggests multiple European source populations underlying the majority of the 

IsoPop individuals. Thus, the tight clustering of the IsoPop individuals with these populations 

potentially rules out the possibility of a single source population. The genetic diversity estimates 

of the IsoPop population are similar to those found in other studies, in that the ranges of the 

estimates overlap, but the average values were different. For example, the FIS values for the 

IsoPop range from -0.00652 to 0.00177 and have mostly negative values whereas those of 

German populations range from -0.0022 to 0.0108 and have mostly positive values (STEFFENS et 

al. 2006). These FIS values indicate that the IsoPop individuals are no more or less closely related 

to each other than expected under the null model of random mating. 

Using the combined marker data from the IsoPop data set and the 1KGP database, we 

were able to infer that most of the IsoPop individuals are descended from at least two source 

populations originally from Europe. This result could aid researchers studying the prevalence of 

diseases in the three rural Illinois communities included in the IsoPop data set by suggesting that 

any alleles among these individuals that cluster with one of the source populations could have 

similar levels of genetic predisposition. More broadly, our study serves as a proof-of-concept to 

demonstrate that it is possible to use an approach like an eigenanalysis to compare the genetic 
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characteristics between a set of individuals and those from a public database, and moreover to 

show that it is possible to obtain biologically meaningful results. 

 In general, research into the risk of disease attributable to specific gene variants and 

combinations is often hindered by a low carrier frequency of specific mutations among the 

general population (SHERRY et al. 2001). While this study showed insignificant differences 

across the rural and urban communities, we did not examine specific loci known/thought to be 

associated with increased disease risk. Additional work would specifically examine and 

characterize such loci, as the identification of specific populations with naturally increased 

carrier frequencies of specific gene variants of interest would greatly justify the utility of 

ecological and historical studies of diseases (PELTONEN et al. 2000). This in turn could result in 

multiple studies of how individual genetic makeup may impact such important topics such as 

drug efficacy (ARBITRIO et al. 2019) and variable outcomes to environmental exposure (RYU et 

al. 2018). 

There are several limitations to this work. First, the rural communities were chosen as a 

matter of feasibility and convenience. While the community size was based upon the work of 

PORTAS et al. (2010), true isolation is more difficult to ascertain objectively. Rigor in assessing 

isolation and randomization of selection would be needed for future work. Second, the choice of 

the urban ‘control’ is also based on convenience. While the urban population has a population 

exceeding 110,000, it is by no means a major metropolitan center as reflected in that its 

population appeared to be related to just one European subpopulation (i.e., British) and is 

therefore potentially problematic to use as an urban control population. This could be because 

the sample urban population was not fully representative of the whole population, or perhaps this 

particular urban population is not as genetically diverse as others. Future studies could use a 
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larger (or multiple) urban community in order to circumvent this potential problem. Third, 

follow-up studies that trace the history of settlement of these communities could complement 

and potentially substantiate the findings of the work presented here. 

Another important limitation of this study is with the genotyping technologies employed 

to obtain markers in the IsoPop and 1KGP data sets. In addition to the potential for ascertainment 

bias inherent in using arrays such as Illumina (described in LIPKA et al. 2015), additional bias 

could arise from the fact that an Illumina chip was used to call markers in the IsoPop data set 

while whole genome sequencing was used in the 1KGP data set. However, our results suggest 

that such an ascertainment bias could be minimal. For example, there is a close proximity 

between the IsoPop to 1KGP individuals in Figures 4-5. We also observed a similar distribution 

of rare and common SNPs IsoPop individual and the 503 1KGP individuals of European descent 

(Supplementary Figure 12 and Supplementary Table 3), as well as similar linkage disequilibrium 

patterns (Supplementary Figure 13). Nevertheless, future studies should use the same sequencing 

platforms to obtain markers in all data sets that are evaluated. Finally, we encourage future 

studies to compare data from rural isolated communities from the US Midwest with marker data 

from other publicly available data sets besides the 1KGP data set that include more than just the 

five subpopulations of European descent, such as PopRes (NELSON et al. 2008). Such a 

comparison could shed further light on the number of source populations underlying these 

isolated communities. 

 

Conclusions 

This study utilized nearly one million high-quality SNPs, and to the best of our knowledge is the 

first to use SNP data to examine both population structure and founder effects in non-religious 
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rural isolate populations in the Midwest US. The potential impact of founder effects on the 

genetic diversity of rural communities over hundreds of years could be the source of future 

studies. For example, these studies could consider advanced statistical approaches for 

quantifying such effects, and moreover parse out these effects on the population over multiple 

generations, from the founding of the population to the present day. Lastly, other SNP chips or 

whole-genome sequencing could be used to obtain a larger marker set (and thus capture an even 

greater amount of genomic diversity) and be used in a combined analysis with these IsoPop 

individuals and other publicly available data sets. 

 

Received 3 April 2019; accepted for publication 12 November 2019. 
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Supplementary Table S1. List of IsoPop Individuals by Population, and Quality Assessments Made by 

Qubit Concentration and the Illumina Call Rate 

IsoPop population 04 is the urban population. 

Population 

Sample 

# 

Extraction Concentration 

(ug/mL) Illumina Call rate Removed? Reason 

01 01-01 167 0.9974812     

01 01-02 120 0.9968473     

01 01-03 67 0.9977021     

01 01-04 88.7 0.9975508     

01 01-05 41.5 0.9975206     

01 01-06 82.9 0.9966888     

01 01-07 105 0.993197     

01 01-08 133 0.9932184     

01 01-09 36.8 0.9868     

01 01-10 500 0.9943691     

01 01-11 158 0.9943488     

01 01-12 34 0.9968446     

01 01-13 94.5 0.9961242     

01 01-14 67.6 0.9962689     

01 01-15 5.62 0.992184     

01 01-16 203 0.9957651     

01 01-17 97.4 0.9970754     

01 01-18 213 0.9961342     

01 01-19 102 0.9979115     

01 01-20 69.1 0.997129     

01 01-21 155 0.9970437     

01 01-22 121 0.9865428     
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01 01-23 106 0.9966873     

01 01-24 248 0.9983436     

01 01-25 24.9 0.9932256     

01 01-26 75.4 0.9961414     

01 01-27 145 0.9953892     

01 01-28 102 0.9954677     

01 01-29 131 0.9963363     

01 01-30 68.4 0.9962432     

01 01-31 47.5 0.9961475     

01 01-32 43.9 0.993865     

01 01-33 86.5 0.9548411 Yes Relative 

01 01-34 174 0.9934438     

01 01-35 17.8 0.9947618     

01 01-36 69.9 0.9942707     

01 01-37 134 0.99441 Yes Relative 

01 01-38 48 0.9950902     

01 01-39 45 0.99222     

01 01-40 56.7 0.8760257 Yes Call rate 

01 01-41 56.9 0.9423677 Yes Call rate 

01 01-42 87.5 0.9892825     

01 01-43 84.9 0.9912366     

01 01-44 409 0.99547     

01 01-45 128 0.9942868 Yes Relative 

01 01-46 114 0.9944782     

01 01-47 171 0.995186     

01 01-48 146 0.9953731     

01 01-49 108 0.9492325 Yes Relative 
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01 01-50 8.84 0.9892086     

01 01-51 40.1 0.9935024     

01 01-52 81.4 0.9930404 Yes Relative 

01 01-53 310 0.9948721     

01 01-54 32.4 0.9954964     

01 01-55 61 0.9954524     

01 01-56 55.1 0.9957517     

01 01-57 47.4 0.9940705     

01 01-58 24 0.9932877     

01 01-59 184 0.9935063 Yes Relative 

01 01-60 175 0.9949337     

01 01-61 169 0.9954049     

01 01-62 76.2 0.9958156     

01 01-63 59.8 0.9959779     

01 01-64 67.7 0.9959041     

01 01-65 395 

0.8925361 

Yes 

Relative & Call 

rate 

01 01-66 80.3 0.96083     

01 01-67 38.4 0.9958524     

01 01-68 42.1 0.9971187     

01 01-69 121 0.9972297     

01 01-70 69.5 0.9976466     

02 02-01 65.4 0.997423     

02 02-02 83.6 0.9969759     

02 02-03 314 0.9952985     

02 02-04 16.6 0.993889     

02 02-05 29.6 0.995648     
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02 02-06 18.3 0.9946512     

02 02-07 121 0.9954558     

02 02-08 66.6 0.9955929     

02 02-09 39.1 0.9960828     

02 02-10 17.7 0.9968446     

02 02-11 15.3 0.9024593 Yes Call rate 

02 02-12 28 0.9545383     

02 02-13 47.5 0.9946432     

02 02-14 42 0.995638     

02 02-15 71.2 0.9962069     

02 02-16 84 0.9963803     

02 02-17 87.7 0.9970464     

02 02-18 76.5 0.9974223     

02 02-19 28.4 0.9941466     

02 02-20 87.5 0.9949123     

02 02-21 160 0.9940981     

02 02-22 78.4 0.9962968     

02 02-23 43.2 0.9956552     

02 02-24 18.5 0.9956419     

02 02-25 87.5 0.9957023     

02 02-26 55.4 0.9968711     

02 02-27 24.4 0.9957361     

02 02-28 84.6 0.9956943     

02 02-29 34.1 0.9955435     

02 02-30 48.6 0.9967592     

03 03-01 85.4 0.9965085     

03 03-02 423 0.9964718     
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03 03-03 33.6 0.9955335     

03 03-04 81.6 0.9360753 Yes Call rate 

03 03-05 77.6 0.9858863     

03 03-06 71.4 0.9933891     

03 03-07 53.2 0.9937685     

03 03-08 89.4 0.9941551     

03 03-09 230 0.9947806     

03 03-10 78.4 0.9936226     

03 03-11 196 0.9966524     

03 03-12 151 0.9958245     

03 03-13 128 0.9950378     

03 03-14 32.4 0.9974203     

03 03-15 79 0.9958003     

03 03-16 63.3 0.9955305     

03 03-17 49.2 0.9947369     

03 03-18 218 0.9964174     

03 03-19 143 0.9961563     

03 03-20 74.3 0.9960966     

03 03-21 30.4 0.9953693     

03 03-22 113 0.9974211     

03 03-23 67.7 0.9970517     

03 03-24 21.2 0.9971091     

03 03-25 51.7 0.9974364     

03 03-26 67.8 0.9964224     

03 03-27 41.9 0.9965323     

03 03-28 8.54 0.9965678     

03 03-29 0.281 0.5624231 Yes Call rate 
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03 03-30 131 0.9931116     

03 03-31 119 0.9953712     

03 03-32 131 0.9962873     

03 03-33 55.3 0.9954233     

03 03-34 120 0.9919245     

03 03-35 81.5 0.9948736     

03 03-36 45.1 0.9955803     

03 03-37 40.7 0.996419     

03 03-38 43.5 0.9955733     

03 03-39 43.7 0.9966946     

03 03-40 37.2 0.9947117     

03 03-41 23.9 0.9941126     

04 04-01 20 0.9950535     

04 04-02 11.9 0.9957716     

04 04-03 37.1 0.9969537     

04 04-04 58.4 0.8425893 Yes Call rate 

04 04-05 39.4 0.8553525 Yes Call rate 

04 04-06 122 0.9579346     

04 04-07 0.603 0.5075501 Yes Call rate 

04 04-08 68.1 0.9936019     

04 04-09 18.4 0.9952101     

04 04-10 52.7 0.99563     

04 04-11 38.1 0.9967926     

04 04-12 156 0.8372148 Yes Call rate 

04 04-13 50.2 0.9472346 Yes Call rate 

04 04-14 127 0.9930136     

04 04-15 13.1 0.9929558     



 

Pre-print version. Visit http://digitalcommons.wayne.edu/humbiol/ after publication to acquire the final version. 

04 04-16 8.95 0.9929485     

04 04-17 26 0.9948089     

04 04-18 35.1 0.9964679     

04 04-19 144 0.9970908     

04 04-20 46.4 0.9937616     

04 04-21 170 0.9941689     

04 04-22 86.3 0.9912428     

04 04-23 81.3 0.9956288     

04 04-24 20.5 0.9811592     

04 04-25 11.9 0.990388     

04 04-26 77.4 0.9663185     

04 04-27 70.2 0.9928811     

04 04-28 81.7 0.9906759     

04 04-29 83.6 0.9911     

04 04-30 71.7 0.98737     

04 04-31 236 0.992705     

04 04-32 97 0.8530886 Yes Call rate 

04 04-33 142 0.9205905 Yes Call rate 

04 04-34 60.6 0.9830862     

04 04-35 64.2 0.9909006     

Control H20   0.452228 Yes Call rate 
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Supplementary Table S2. Genetic Diversity Statistics for Four IsoPop Populations and for All IsoPop Together 

IsoPop population 04 is the urban population. 

 ISOPOP1 ISOPOP2 ISOPOP3 ISOPOP4 ISOPOP 

Chr ADOL Theta (PI) ADOL Theta (PI) ADOL Theta (PI) ADOL Theta (PI) FIS 

1 0.2915+/-0.1386 2597.6083 0.2900+/-0.1392 2589.5705 0.2900+/-0.1385 2584.2541 0.2918+/-0.1402 2574.1903 -0.0025 

2 0.2998+/-0.1425 2664.5911 0.3004+/-0.1442 2668.5602 0.2998+/-0.1432 2657.7313 0.3009+/-0.1445 2653.4396 -0.0016 

3 0.3058+/-0.1454 2290.2422 0.3059+/-0.1468 2291.4852 0.3048+/-0.1456 2277.5045 0.3061+/-0.1470 2267.9935 -0.0021 

4 0.3043+/-0.1447 1922.8321 0.3029+/-0.1454 1912.6884 0.3025+/-0.1446 1908.4705 0.3036+/-0.1458 1907.1312 -0.0004 

5 0.3026+/-0.1439 1930.1287 0.3026+/-0.1452 1929.8379 0.3014+/-0.1440 1917.7922 0.3028+/-0.1455 1917.0143 -0.0014 

6 0.2951+/-0.1403 2054.056 0.2938+/-0.1410 1358.8209 0.2917+/-0.1394 2024.5564 0.295+/-0.1417 2030.1247 0.0000 

7 0.3089+/-0.1469 1762.7036 0.3097+/-0.1486 1769.9704 0.3092+/-0.1477 1762.2940 0.31+/-0.1489 1752.5753 -0.0031 

8 0.3086+/-0.1467 1840.5437 0.3095+/-0.1486 1846.6304 0.3083+/-0.1473 1839.5108 0.3099+/-0.1488 1833.2201 0.0002 

9 0.3088+/-0.1469 1601.6217 0.3094+/-0.1485 1604.9891 0.3061+/-0.1463 1589.3094 0.3072+/-0.1476 1580.4584 0.0018 

10 0.2997+/-0.1425 1830.8045 0.3002+/-0.1441 1835.9401 0.2972+/-0.142 1813.7356 0.2988+/-0.1435 1807.1032 -0.0035 

11 0.3002+/-0.1428 1689.5503 0.3000+/-0.1440 1688.0544 0.3011+/-0.1439 1690.2960 0.3011+/-0.1446 1677.9968 -0.0019 

12 0.2992+/-0.1423 1606.7668 0.3010+/-0.1445 1617.9341 0.299+/-0.1429 1604.6450 0.2979+/-0.1431 1583.6214 -0.0028 

13 0.2936+/-0.1396 1229.7744 0.2927+/-0.1405 1227.3454 0.2914+/-0.1393 1221.4985 0.2947+/-0.1416 1227.6227 -0.0042 

14 0.2913+/-0.1386 1028.9169 0.2906+/-0.1395 1027.2317 0.2909+/-0.139 1027.0603 0.2929+/-0.1407 1028.8643 -0.0006 

15 0.3013+/-0.1433 1015.2592 0.3028+/-0.1454 1019.9867 0.2998+/-0.1433 1007.4499 0.3011+/-0.1447 1003.2227 -0.0065 

16 0.3061+/-0.1456 1078.9934 0.3068+/-0.1473 1082.6443 0.3044+/-0.1455 1070.3680 0.3074+/-0.1477 1070.6104 -0.0058 

17 0.3016+/-0.1435 910.5357 0.3017+/-0.1449 910.4410 0.3029+/-0.1448 911.3420 0.3029+/-0.1456 905.4578 -0.0022 

18 0.2966+/-0.1411 995.2315 0.2972+/-0.1427 993.9946 0.2931+/-0.1401 982.0236 0.2957+/-0.1421 983.0377 -0.0018 

19 0.3014+/-0.1434 588.6017 0.3019+/-0.1450 589.8766 0.3013+/-0.1441 584.4372 0.3011+/-0.1447 575.9227 -0.0019 

20 0.2991+/-0.1423 832.3287 0.3006+/-0.1443 834.9552 0.2989+/-0.1429 829.1955 0.3001+/-0.1442 828.8578 -0.0012 

21 0.3126+/-0.1488 482.7003 0.3118+/-0.1498 481.9855 0.3127+/-0.1496 482.1951 0.315+/-0.1515 479.8110 -0.0047 

22 0.2911+/-0.1386 405.5007 0.2937+/-0.1412 410.0502 0.2918+/-0.1396 404.6933 0.2903+/-0.1396 397.1279 -0.0043 

 

Chr=Chromosome, ADOL=average diversity over loci, FIS=inbreeding coefficient 
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Supplementary Table S3.  

Contingency table showing the proportions of 999,259 markers that are common (minor allele 

frequency, MAF, greater than 0.05) and rare (MAF less than or equal to 0.05) among 157 IsoPop 

(denoted IsoPop; Rows) individuals and the 503 individuals in the 1000 Genomes database of 

European descent (denoted Eur; Columns). 

  Eur 

IsoPop  MAF > 0.05 MAF < 0.05 

MAF > 0.05 0.4413 0.0158 

MAF < 0.05 0.0141 0.5288 
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Figure Captions 

Figure 1. Computational methods workflow. Programs used are in dark gray, and unless 

otherwise noted, were performed in RStudio. The 1000 Genomes Project database has been 

abbreviated 1KGP. 

Figure 2. plot of observed FIS values (Y-axis) of 999,259 SNPs. The X-axis shows the 

populations: the 1000 Genomes Project individuals are listed as 1KGP, the individuals of 

European descent from the 1000 Genomes Project are listed as EUR, IsoPop represents all the 

Illinois individuals, followed by each population separately. The urban population is IsoPop4.  

Figure 3. Eigen plot of 153 IsoPop individuals with the four distantly grouped individuals 

removed using 999,259 SNPs. The X-axis is the value of the first eigenvector, while the Y-axis 

is the value of the second eigenvector. Individuals from the four IsoPop communities are 

indicated with different symbols. The majority of the IsoPop individuals cluster into one group. 

The four IsoPop populations are represented by different symbols and are labeled as 01, 02, 03, 

and 04. 

Figure 4. Eigen plot of 2,504 individuals from 1000 Genomes database and 157 IsoPop 

individuals using 999,259 SNPs. The X-axis is the value of the first eigenvector, while the Y-

axis is the value of the second eigenvector. Individuals from the different subpopulations 

represented in the 1000 Genomes Project, as well as the four IsoPop communities are colored 

differently. The IsoPop individuals cluster into the individuals from the 1000 Genomes database 

that are of European descent. The world populations of Africa (AFR), Americas (AMR), East 

Asia (EAS), South Asia (SAS), and Europe (EUR), are plotted along with the IsoPop (IL) 

populations. 
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Figure 5. Eigen plot of 503 individuals from 1000 Genomes database of European descent and 

157 IsoPop individuals using 999,259 SNPs. The X-axis is the value of the first eigenvector, 

while the Y-axis is the value of the second eigenvector. Individuals from the different European 

subpopulations represented in the 1000 Genomes Project, as well as the four IsoPop communities 

are colored differently. The IsoPop individuals cluster into two groups. The European (EUR) 

populations are plotted with the following abbreviations: Utah residents in CEPH (CEU), 

Finland (FIN), British in England and Scotland (GBR), Iberian populations in Spain (IBS), and 

Toscani in Italia (TSI), are plotted along with the IsoPop (IL) populations. The four IsoPop 

populations are represented by different symbols and are labeled as 01, 02, 03, and 04. 

Supplementary Figure S1. Heatmap depicting values of the coancestry matrix for all 2,504 

individuals from 1000 Genomes database and 157 IsoPop individuals. The actual numerical 

coancestry values between each pair of individuals are provided in Supplementary File 1.  

Supplementary Figure S2. Scree plot for the eigenanalysis of all 157 IsoPop individuals. The 

X-axis indicates the index of eigenvalues, while the Y-axis indicates the numerical value of each 

eigenvalue.  

Supplementary Figure S3. EIGMIX plot of all 157 IsoPop individuals. The four IsoPop 

populations are represented by different symbols and are labeled as 01, 02, 03, and 04. The X-

axis is the value of the first eigenvector, while the Y-axis is the value of the second eigenvector.  

Supplementary Figure S4. EIGMIX plot of all 157 IsoPop individuals. The four IsoPop 

populations are represented by different colors and are labeled as 01, 02, 03, and 04. The X-axis 

is the value of the first eigenvector, while the Y-axis is the value of the third eigenvector.  
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Supplementary Figure S5. EIGMIX plot of all 157 IsoPop individuals. The four IsoPop 

populations are represented by different colors and are labeled as 01, 02, 03, and 04. The X-axis 

is the value of the second eigenvector, while the Y-axis is the value of the third eigenvector.  

Supplementary Figure S6. Scree plot for the eigenanalysis of all 2,504 individuals from 1000 

Genomes database 157 IsoPop individuals. The X-axis indicates the index of eigenvalues, while 

the Y-axis indicates the numerical value of each eigenvalue.  

Supplementary Figure S7. EIGMIX plot of all 2,504 individuals from 1000 Genomes database 

157 IsoPop individuals. The four IsoPop populations are represented by different colors and are 

labeled as 01, 02, 03, and 04. The world populations of Africa (AFR), Americas (AMR), East 

Asia (EAS), South Asia (SAS), and Europe (EUR), are also indicated in different colors. 

The X-axis is the value of the third eigenvector, while the Y-axis is the value of the first 

eigenvector. 

Supplementary Figure S8. EIGMIX plot of all 2,504 individuals from 1000 Genomes database 

157 IsoPop individuals. The four IsoPop populations are represented by different colors and are 

labeled as 01, 02, 03, and 04. The world populations of Africa (AFR), Americas (AMR), East 

Asia (EAS), South Asia (SAS), and Europe (EUR), are also indicated in different colors. 

The X-axis is the value of the third eigenvector, while the Y-axis is the value of the second 

eigenvector. 

Supplementary Figure S9. Scree plot for the eigenanalysis of 503 individuals from 1000 

Genomes database of European descent and 157 IsoPop individuals The X-axis indicates the 

index of eigenvalues, while the Y-axis indicates the numerical value of each eigenvalue. 

Supplementary Figure S10. Eigen plot of 503 individuals from 1000 Genomes database of 

European descent and 157 IsoPop individuals using EIGMIX. The X-axis is the value of the first 
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eigenvector, while the Y-axis is the value of the third eigenvector. Individuals from each 

European subpopulation represented in the 1000 Genomes Project, as well as the each of the four 

IsoPop communities, are colored differently. The European (EUR) populations are plotted with 

the following abbreviations: Utah residents in CEPH (CEU), Finland (FIN), British in England 

and Scotland (GBR), Iberian populations in Spain (IBS), and Toscani in Italia (TSI), are plotted 

along with the IsoPop (IL) populations. The four IsoPop populations are represented by different 

symbols and are labeled as 01, 02, 03, and 04. 

Supplementary Figure S11. Eigen plot of 503 individuals from 1000 Genomes database of 

European descent and 157 IsoPop individuals using EIGMIX. The X-axis is the value of the 

second eigenvector, while the Y-axis is the value of the third eigenvector. Individuals from each 

European subpopulation represented in the 1000 Genomes Project, as well as the each of the four 

IsoPop communities, are colored differently. The European (EUR) populations are plotted with 

the following abbreviations: Utah residents in CEPH (CEU), Finland (FIN), British in England 

and Scotland (GBR), Iberian populations in Spain (IBS), and Toscani in Italia (TSI), are plotted 

along with the IsoPop (IL) populations. The four IsoPop populations are represented by different 

symbols and are labeled as 01, 02, 03, and 04. 

Supplementary Figure S12. Empirical density (Y-axis) of the differences in minor allele 

frequencies (MAFs) of 999,259 markers among the 157 IsoPop individuals and the 503 

individuals in the 1000 Genomes database of European descent. The mode of this density is 

centered at 0, suggesting that the overwhelming majority of these markers have similar MAFs in 

both of these data sets. 

Supplementary Figure S13. Linkage disequilibrium (LD) decay plots among the 2,504 

individuals in the 1,000 Genomes data base (1KGP), the 503 individuals in the 1000 Genomes 
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database of European descent (EUR), all 157 individuals of the IsoPop population (ISOPOP), as 

well as the IsoPop individuals subdivided into the four communities (ISOPOP1-ISOPOP4). For 

each graph, the Y-axis is the squared Pearson correlation coefficient (𝑟2) between marker pairs, 

and the X-axis depicts the physical distance between markers (kb). (A) the range of values in the 

X-axis is from 0 kb – 1,000 kb; (B) the range of values in the X-axis is from 0 kb – 300 kb. Note 

that the LD decay is higher for the urban population (ISOPOP4) compared to the three rural 

communities (ISOPOP1-ISOPOP3), which is the opposite of what would be expected should a 

founder effect exist in these rural communities. 
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Figure 2. 
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Figure 3. 

 



 

Pre-print version. Visit http://digitalcommons.wayne.edu/humbiol/ after publication to acquire the final version. 

Figure 4. 
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Supplementary Figure S1. 
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Supplementary Figure S2. 
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Supplementary Figure S3. 
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Supplementary Figure S4. 
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Supplementary Figure S5. 
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Supplementary Figure S6. 
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Supplementary Figure S7. 
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Supplementary Figure S8. 
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Supplementary Figure S9. 
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Supplementary Figure S10. 

 



 

Pre-print version. Visit http://digitalcommons.wayne.edu/humbiol/ after publication to acquire the final version. 

Supplementary Figure S11. 
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Supplementary Figure S12. 
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