107 research outputs found

    Inhibition of the Collapse of the Shaker K+ Conductance by Specific Scorpion Toxins

    Get PDF
    The Shaker B K+ conductance (GK) collapses when the channels are closed (deactivated) in Na+ solutions that lack K+ ions. Also, it is known that external TEA (TEAo) impedes the collapse of GK (Gómez-Lagunas, F. 1997. J. Physiol. 499:3–15; Gómez-Lagunas, F. 2001. J. Gen. Physiol. 118:639–648), and that channel block by TEAo and scorpion toxins are two mutually exclusive events (Goldstein, S.A.N., and C. Miller. 1993. Biophys. J. 65:1613–1619). Therefore, we tested the ability of scorpion toxins to inhibit the collapse of GK in 0 K+. We have found that these toxins are not uniform regarding the capacity to protect GK. Those toxins, whose binding to the channels is destabilized by external K+, are also effective inhibitors of the collapse of GK. In addition to K+, other externally added cations also destabilize toxin block, with an effectiveness that does not match the selectivity sequence of K+ channels. The inhibition of the drop of GK follows a saturation relationship with [toxin], which is fitted well by the Michaelis-Menten equation, with an apparent Kd bigger than that of block of the K+ current. However, another plausible model is also presented and compared with the Michaelis-Menten model. The observations suggest that those toxins that protect GK in 0 K+ do so by interacting either with the most external K+ binding site of the selectivity filter (suggesting that the K+ occupancy of only that site of the pore may be enough to preserve GK) or with sites capable of binding K+ located in the outer vestibule of the pore, above the selectivity filter

    Nodulin 41, a novel late nodulin of common bean with peptidase activity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The legume-rhizobium symbiosis requires the formation of root nodules, specialized organs where the nitrogen fixation process takes place. Nodule development is accompanied by the induction of specific plant genes, referred to as nodulin genes. Important roles in processes such as morphogenesis and metabolism have been assigned to nodulins during the legume-rhizobium symbiosis.</p> <p>Results</p> <p>Here we report the purification and biochemical characterization of a novel nodulin from common bean (<it>Phaseolus vulgaris </it>L.) root nodules. This protein, called nodulin 41 (PvNod41) was purified through affinity chromatography and was partially sequenced. A genomic clone was then isolated via PCR amplification. PvNod41 is an atypical aspartyl peptidase of the A1B subfamily with an optimal hydrolytic activity at pH 4.5. We demonstrate that PvNod41 has limited peptidase activity against casein and is partially inhibited by pepstatin A. A PvNod41-specific antiserum was used to assess the expression pattern of this protein in different plant organs and throughout root nodule development, revealing that PvNod41 is found only in bean root nodules and is confined to uninfected cells.</p> <p>Conclusions</p> <p>To date, only a small number of atypical aspartyl peptidases have been characterized in plants. Their particular spatial and temporal expression patterns along with their unique enzymatic properties imply a high degree of functional specialization. Indeed, PvNod41 is closely related to CDR1, an <it>Arabidopsis thaliana </it>extracellular aspartyl protease involved in defense against bacterial pathogens. PvNod41's biochemical properties and specific cell-type localization, in uninfected cells of the common bean root nodule, strongly suggest that this aspartyl peptidase has a key role in plant defense during the symbiotic interaction.</p

    Antibody prevalence to mumps in children and adolescents at two years of the introduction of the MMR vaccine

    Get PDF
    Objective. To assess the prevalence of mumps antibodies in children and adolescents of Mexico, two years after the introduction of the mumps-containing vaccine MMR. Ma­terials and methods. Evaluation of IgG antibodies with a commercial kit of indirect ELISA. Results. 2 111 children (1-9 years) and 2 484 adolescents (10-19 years) were studied. The overall antibody seroprevalence was 70.6% (95% CI 69.3- 71.9), being higher in adolescents (83.0%, 95%CI 81.5-84.5) than in children (56.0%, 95%CI: 53.9-58.11) (OR 3.83, 95%CI 3.34-4.39, p=0.0000000). Children 1 to 2 and 6 to 9 years who were part of the target group of mumps vaccination since 1998, they had higher seroprevalence than the group of 3 to 5 years unvaccinated. Conclusions. Seropositivity in children aged 1 to 2 and 6 to 9 years was probably at­tributable to vaccination during 1998-2000 and in other age groups to natural exposure related to time elapsed in each birth cohort until the study recruitment

    Venom gland transcriptomes of two elapid snakes (Bungarus multicinctus and Naja atra) and evolution of toxin genes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Kraits (genus <it>Bungarus</it>) and cobras (genus <it>Naja</it>) are two representative toxic genera of elapids in the old world. Although they are closely related genera and both of their venoms are very toxic, the compositions of their venoms are very different. To unveil their detailed venoms and their evolutionary patterns, we constructed venom gland cDNA libraries and genomic bacterial artificial chromosome (BAC) libraries for <it>Bungarus multicinctus </it>and <it>Naja atra</it>, respectively. We sequenced about 1500 cDNA clones for each of the venom cDNA libraries and screened BAC libraries of the two snakes by blot analysis using four kinds of toxin probes; <it>i.e</it>., three-finger toxin (3FTx), phospholipase A2 (PLA2), kunitz-type protease inhibitor (Kunitz), and natriuretic peptide (NP).</p> <p>Results</p> <p>In total, 1092 valid expressed sequences tags (ESTs) for <it>B. multicinctus </it>and 1166 ESTs for <it>N. atra </it>were generated. About 70% of these ESTs can be annotated as snake toxin transcripts. 3FTx (64.5%) and <it>β </it>bungarotoxin (25.1%) comprise the main toxin classes in <it>B. multicinctus</it>, while 3FTx (95.8%) is the dominant toxin in <it>N. atra</it>. We also observed several less abundant venom families in <it>B. multicinctus </it>and <it>N. atra</it>, such as PLA2, C-type lectins, and Kunitz. Peculiarly a cluster of NP precursors with tandem NPs was detected in <it>B. multicinctus</it>. A total of 71 positive toxin BAC clones in <it>B. multicinctus </it>and <it>N. atra </it>were identified using four kinds of toxin probes (3FTx, PLA2, Kunitz, and NP), among which 39 3FTx-postive BACs were sequenced to reveal gene structures of 3FTx toxin genes.</p> <p>Conclusions</p> <p>Based on the toxin ESTs and 3FTx gene sequences, the major components of <it>B. multicinctus </it>venom transcriptome are neurotoxins, including long chain alpha neurotoxins (<it>α</it>-ntx) and the recently originated <it>β </it>bungarotoxin, whereas the <it>N. atra </it>venom transcriptome mainly contains 3FTxs with cytotoxicity and neurotoxicity (short chain <it>α</it>-ntx). The data also revealed that tandem duplications contributed the most to the expansion of toxin multigene families. Analysis of nonsynonymous to synonymous nucleotide substitution rate ratios (<it>dN</it>/<it>dS</it>) indicates that not only multigene toxin families but also other less abundant toxins might have been under rapid diversifying evolution.</p

    Structural and Functional Diversity of Acidic Scorpion Potassium Channel Toxins

    Get PDF
    Background: Although the basic scorpion K + channel toxins (KTxs) are well-known pharmacological tools and potential drug candidates, characterization the acidic KTxs still has the great significance for their potential selectivity towards different K + channel subtypes. Unfortunately, research on the acidic KTxs has been ignored for several years and progressed slowly. Principal Findings: Here, we describe the identification of nine new acidic KTxs by cDNA cloning and bioinformatic analyses. Seven of these toxins belong to three new a-KTx subfamilies (a-KTx28, a-KTx29, and a-KTx30), and two are new members of the known k-KTx2 subfamily. ImKTx104 containing three disulfide bridges, the first member of the a-KTx28 subfamily, has a low sequence homology with other known KTxs, and its NMR structure suggests ImKTx104 adopts a modified cystine-stabilized a-helix-loop-b-sheet (CS-a/b) fold motif that has no apparent a-helixs and b-sheets, but still stabilized by three disulfide bridges. These newly described acidic KTxs exhibit differential pharmacological effects on potassium channels. Acidic scorpion toxin ImKTx104 was the first peptide inhibitor found to affect KCNQ1 channel, which is insensitive to the basic KTxs and is strongly associated with human cardiac abnormalities. ImKTx104 selectively inhibited KCNQ1 channel with a Kd of 11.69 mM, but was less effective against the basic KTxs-sensitive potassium channels. In addition to the ImKTx104 toxin, HeTx204 peptide, containing a cystine-stabilized a-helix-loop-helix (CS-a/a) fold scaffold motif

    Envenomation by Micrurus coral snakes in the Brazilian Amazon region: report of two cases

    Get PDF
    Two cases of proven coral snake bites were reported in Belém, Pará State, Brazil. The first case was a severe one caused by Micrurus surinamensis. The patient required mechanical ventilation due to acute respiratory failure. The second case showed just mild signs of envenomation caused by Micrurus filiformis. Both patients received specific Micrurus antivenom and were discharged without further complications. Coral snake bites are scarcely reported in the Amazon region and there is a broad spectrum of clinical manifestations, varying from extremely mild to those which may rapidly lead to death if the patient is not treated as soon as possible

    Horse immunization with short-chain consensus α-neurotoxin generates antibodies against broad spectrum of elapid venomous species

    Get PDF
    Antivenoms are fundamental in the therapy for snakebites. In elapid venoms, there are toxins, e.g. short-chain α-neurotoxins, which are quite abundant, highly toxic, and consequently play a major role in envenomation processes. The core problem is that such α-neurotoxins are weakly immunogenic, and many current elapid antivenoms show low reactivity towards them. We have previously developed a recombinant consensus short-chain α-neurotoxin (ScNtx) based on sequences from the most lethal elapid venoms from America, Africa, Asia, and Oceania. Here we report that an antivenom generated by immunizing horses with ScNtx can successfully neutralize the lethality of pure recombinant and native short-chain α-neurotoxins, as well as whole neurotoxic elapid venoms from diverse genera such as Micrurus, Dendroaspis, Naja, Walterinnesia, Ophiophagus and Hydrophis. These results provide a proof-ofprinciple for using recombinant proteins with rationally designed consensus sequences as universal immunogens for developing next-generation antivenoms with higher effectiveness and broader neutralizing capacity.Universidad de Costa Rica/[741-B7-608]/UCR/Costa RicaDireccion General de Asuntos del Personal Academico/[IN203118]/DGAPA/MéxicoDireccion General de Asuntos del Personal Academico/[IN207218]/DGAPA/MéxicoUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias de la Salud::Instituto Clodomiro Picado (ICP

    TOXOPLASMOSIS IN MEXICO: EPIDEMIOLOGICAL SITUATION IN HUMANS AND ANIMALS

    Full text link
    corecore