64 research outputs found

    Extreme rainfall and the Turkwel Gorge Dam in Kenya: Understanding risks and management priorities (REACH Policy brief)

    Get PDF
    Lakes along the Great African Rift System from Ethiopia to Tanzania are at their highest levels in decades. The rising water poses multiple hazards including contamination, landslides, and flooding affecting millions of lives. In November 2020, authorities shared concerns of a potential overflowing of the Turkwel Gorge Dam due to excessive rains. The potential flooding could affect over 300,000 people in an area accustomed to droughts. This brief discusses how understanding rainfall variability can provide lessons for managing dams in drylands to improve water security for energy, agriculture, environmental and human needs

    COVID-19 Impacts on Water Burden among Households in Turkana

    Get PDF
    This policy brief highlights findings from a study assessing respondents’ views on the impact of the pandemic on water security and its burden on households in Turkana County, Kenya. It also established possible solutions to the risks faced by communities in Turkana. The REACH Programme implemented a household survey of 909 household heads in Turkana Central in October 2017

    Regional Initiatives in Support of Surveillance in East Africa: The East Africa Integrated Disease Surveillance Network (EAIDSNet) Experience.

    Get PDF
    The East African Integrated Disease Surveillance Network (EAIDSNet) was formed in response to a growing frequency of cross-border malaria outbreaks in the 1990s and a growing recognition that fragmented disease interventions, coupled with weak laboratory capacity, were making it difficult to respond in a timely manner to the outbreaks of malaria and other infectious diseases. The East Africa Community (EAC) partner states, with financial support from the Rockefeller Foundation, established EAIDSNet in 2000 to develop and strengthen the communication channels necessary for integrated cross-border disease surveillance and control efforts. The objective of this paper is to review the regional EAIDSNet initiative and highlight achievements and challenges in its implementation. Major accomplishments of EAIDSNet include influencing the establishment of a Department of Health within the EAC Secretariat to support a regional health agenda; successfully completing a regional field simulation exercise in pandemic influenza preparedness; and piloting a web-based portal for linking animal and human health disease surveillance. The strategic direction of EAIDSNet was shaped, in part, by lessons learned following a visit to the more established Mekong Basin Disease Surveillance (MBDS) regional network. Looking to the future, EAIDSNet is collaborating with the East, Central and Southern Africa Health Community (ECSA-HC), EAC partner states, and the World Health Organization to implement the World Bank-funded East Africa Public Health Laboratory Networking Project (EAPHLNP). The network has also begun lobbying East African countries for funding to support EAIDSNet activities

    Hydrological response and complex impact pathways of the 2015/2016 El Niño in Eastern and Southern Africa

    Get PDF
    The 2015/2016 El Niño has been classified as one of the three most severe on record. El Niño teleconnections are commonly associated with droughts in southern Africa and high precipitation in eastern Africa. Despite their relatively frequent occurrence, evidence for their hydrological effects and impacts beyond agriculture is limited. We examine the hydrological response and impact pathways of the 2015/2016 El Niño in eastern and southern Africa, focusing on Botswana, Kenya, and Zambia. We use in situ and remotely sensed time series of precipitation, river flow, and lake levels complemented by qualitative insights from interviews with key organizations in each country about awareness, impacts, and responses. Our results show that drought conditions prevailed in large parts of southern Africa, reducing runoff and contributing to unusually low lake levels in Botswana and Zambia. Key informants characterized this El Niño through record high temperatures and water supply disruption in Botswana and through hydroelectric load shedding in Zambia. Warnings of flood risk in Kenya were pronounced, but the El Niño teleconnection did not materialize as expected in 2015/2016. Extreme precipitation was limited and caused localized impacts. The hydrological impacts in southern Africa were severe and complex, strongly exacerbated by dry antecedent conditions, recent changes in exposure and sensitivity and management decisions. Improved understanding of hydrological responses and the complexity of differing impact pathways can support design of more adaptive, region-specific management strategies

    Africa

    Get PDF
    Africa is one of the lowest contributors to greenhouse gas emissions causing climate change, yet key development sectors have already experienced widespread losses and damages attributable to human-induced climate change, including biodiversity loss, water shortages, reduced food production, loss of lives and reduced economic growth (high confidence1).// Between 1.5°C and 2°C global warming—assuming localised and incremental adaptation—negative impacts are projected to become widespread and severe with reduced food production, reduced economic growth, increased inequality and poverty, biodiversity loss, increased human morbidity and mortality (high confidence). Limiting global warming to 1.5°C is expected to substantially reduce damages to African economies, agriculture, human health, and ecosystems compared to higher levels of global warming (high confidence).// Exposure and vulnerability to climate change in Africa are multi-dimensional with socioeconomic, political and environmental factors intersecting (very high confidence). Africans are disproportionately employed in climate-exposed sectors: 55–62% of the sub-Saharan workforce is employed in agriculture and 95% of cropland is rainfed. In rural Africa, poor and female-headed households face greater livelihood risks from climate hazards. In urban areas, growing informal settlements without basic services increase the vulnerability of large populations to climate hazards, especially women, children and the elderly. // Adaptation in Africa has multiple benefits, and most assessed adaptation options have medium effectiveness at reducing risks for present-day global warming, but their efficacy at future warming levels is largely unknown (high confidence)./

    Elevation and cholera: an epidemiological spatial analysis of the cholera epidemic in Harare, Zimbabwe, 2008-2009

    Get PDF
    BACKGROUND: In highly populated African urban areas where access to clean water is a challenge, water source contamination is one of the most cited risk factors in a cholera epidemic. During the rainy season, where there is either no sewage disposal or working sewer system, runoff of rains follows the slopes and gets into the lower parts of towns where shallow wells could easily become contaminated by excretes. In cholera endemic areas, spatial information about topographical elevation could help to guide preventive interventions. This study aims to analyze the association between topographic elevation and the distribution of cholera cases in Harare during the cholera epidemic in 2008 and 2009. METHODS: We developed an ecological study using secondary data. First, we described attack rates by suburb and then calculated rate ratios using whole Harare as reference. We illustrated the average elevation and cholera cases by suburbs using geographical information. Finally, we estimated a generalized linear mixed model (under the assumption of a Poisson distribution) with an Empirical Bayesian approach to model the relation between the risk of cholera and the elevation in meters in Harare. We used a random intercept to allow for spatial correlation of neighboring suburbs. RESULTS: This study identifies a spatial pattern of the distribution of cholera cases in the Harare epidemic, characterized by a lower cholera risk in the highest elevation suburbs of Harare. The generalized linear mixed model showed that for each 100 meters of increase in the topographical elevation, the cholera risk was 30% lower with a rate ratio of 0.70 (95% confidence interval=0.66-0.76). Sensitivity analysis confirmed the risk reduction with an overall estimate of the rate ratio between 20% and 40%. CONCLUSION: This study highlights the importance of considering topographical elevation as a geographical and environmental risk factor in order to plan cholera preventive activities linked with water and sanitation in endemic areas. Furthermore, elevation information, among other risk factors, could help to spatially orientate cholera control interventions during an epidemic

    Reversed Holocene temperature–moisture relationship in the Horn of Africa

    Get PDF
    Anthropogenic climate change is predicted to severely impact the global hydrological cycle1, particularly in tropical regions where agriculture-based economies depend on monsoon rainfall2. In the Horn of Africa, more frequent drought conditions in recent decades3,4 contrast with climate models projecting precipitation to increase with rising temperature5. Here we use organic geochemical climate-proxy data from the sediment record of Lake Chala (Kenya and Tanzania) to probe the stability of the link between hydroclimate and temperature over approximately the past 75,000 years, hence encompassing a sufficiently wide range of temperatures to test the 'dry gets drier, wet gets wetter' paradigm6 of anthropogenic climate change in the time domain. We show that the positive relationship between effective moisture and temperature in easternmost Africa during the cooler last glacial period shifted to negative around the onset of the Holocene 11,700 years ago, when the atmospheric carbon dioxide concentration exceeded 250 parts per million and mean annual temperature approached modern-day values. Thus, at that time, the budget between monsoonal precipitation and continental evaporation7 crossed a tipping point such that the positive influence of temperature on evaporation became greater than its positive influence on precipitation. Our results imply that under continued anthropogenic warming, the Horn of Africa will probably experience further drying, and they highlight the need for improved simulation of both dynamic and thermodynamic processes in the tropical hydrological cycle
    corecore