24 research outputs found

    On the long-term sustainability of copper, zinc and lead supply, using a system dynamics model

    Get PDF
    Publisher's version (útgefin grein).The long-term supply sustainability of copper, zinc and lead was assessed. Copper will not run into physcal scarcity in the future, but increased demand and decreased resource quality will cause significant price increases. The copper price is suggested to increase significantly in the coming decades. A similar situation applies for zinc and lead with soft scarcity and increased prices for zinc. The total supply of copper reaches a maximum 2030–2045, zinc 2030–2050 and lead 2025-2030. The copper supply per person and year and decline after 2130, and the copper stock-in-use reaches a maximum in 2050 and decline afterwards. The zinc supply per person per year reach a maximum in 2100 and decline after 2100, and the zinc stock-in use shows a similar pattern. The lead supply per person reach a plateau in 1985, and decline after 2070, whereas the lead stock-in-use reach a plateau in 2080 and decline after 2100. For copper, zinc and lead, scarcity will mainly be manifested as increased metal price, with feedbacks on demand. The predicted price increase will cause recycling to increase in the future. The supply situation for copper would be much improved if the recycling of copper could be strongly promoted through policy means, as well as it would work well to limit the price increases predicted under business-as-usual. Considering the importance of these metals for society, it is essential to set adequate policies for resource efficiency and resource conservation for society.This study contributed to the SimRess project (Models, potential andlong-term scenarios for resource efficiency),funded by the GermanFederal Ministry for Environment and the German EnvironmentalProtection Agency (FKZ 3712 93 102). Dr. Ullrich Lorenz is projectofficer at the German Environmental Protection Agency (UBA). Onbehalf of all authors, the corresponding author states that there is noconflict of interest.Peer Reviewe

    Self-applied somnography : technical feasibility of electroencephalography and electro-oculography signal characteristics in sleep staging of suspected sleep-disordered adults

    Get PDF
    Funding Information: Financial support for this study was provided by the European Union's Horizon 2020 Research and Innovation Programme under grant agreement No 965417, by the Research Committee of the Kuopio University Hospital Catchment Area for the State Research Funding (Grants 5041807, 5041804, 5041803, 5041797, and 5041794), by the Finnish Cultural Foundation through Kainuu Regional Fund and Central fund, by Olvi Foundation, by the Finnish Anti‐Tuberculosis Association, by Tampere Tuberculosis Foundation, by the Research Foundation of the Pulmonary Diseases, by the NordForsk (NordSleep Project 90458) through the Business Finland (Grant 5133/31/2018), by the Kuopio University Hospital Research Foundation, and The Icelandic Centre for Research. Publisher Copyright: © 2023 The Authors. Journal of Sleep Research published by John Wiley & Sons Ltd on behalf of European Sleep Research Society.Sleep recordings are increasingly being conducted in patients’ homes where patients apply the sensors themselves according to instructions. However, certain sensor types such as cup electrodes used in conventional polysomnography are unfeasible for self-application. To overcome this, self-applied forehead montages with electroencephalography and electro-oculography sensors have been developed. We evaluated the technical feasibility of a self-applied electrode set from Nox Medical (Reykjavik, Iceland) through home sleep recordings of healthy and suspected sleep-disordered adults (n = 174) in the context of sleep staging. Subjects slept with a double setup of conventional type II polysomnography sensors and self-applied forehead sensors. We found that the self-applied electroencephalography and electro-oculography electrodes had acceptable impedance levels but were more prone to losing proper skin–electrode contact than the conventional cup electrodes. Moreover, the forehead electroencephalography signals recorded using the self-applied electrodes expressed lower amplitudes (difference 25.3%–43.9%, p < 0.001) and less absolute power (at 1–40 Hz, p < 0.001) than the polysomnography electroencephalography signals in all sleep stages. However, the signals recorded with the self-applied electroencephalography electrodes expressed more relative power (p < 0.001) at very low frequencies (0.3–1.0 Hz) in all sleep stages. The electro-oculography signals recorded with the self-applied electrodes expressed comparable characteristics with standard electro-oculography. In conclusion, the results support the technical feasibility of the self-applied electroencephalography and electro-oculography for sleep staging in home sleep recordings, after adjustment for amplitude differences, especially for scoring Stage N3 sleep.Peer reviewe

    Cadmium exposure in adults across Europe: Results from the HBM4EU Aligned Studies survey 2014-2020

    Get PDF
    ReviewThe objectives of the study were to estimate the current exposure to cadmium (Cd) in Europe, potential differences between the countries and geographic regions, determinants of exposure and to derive European exposure levels. The basis for this work was provided by the European Human Biomonitoring Initiative (HBM4EU) which established a framework for alignment of national or regional HBM studies. For the purpose of Cd exposure assessment, studies from 9 European countries (Iceland, Denmark, Poland, Czech Republic, Croatia, Portugal, Germany, France, Luxembourg) were included and urine of 20–39 years old adults sampled in the years 2014–2021 (n = 2510). The measurements in urine were quality assured by the HBM4EU quality assurance/quality control scheme, study participants' questionnaire data were post-harmonized. Spatially resolved external data, namely Cd concentrations in soil, agricultural areas, phosphate fertilizer application, traffic density and point source Cd release were collected for the respective statistical territorial unit (NUTS). There were no distinct geographic patterns observed in Cd levels in urine, although the data revealed some differences between the specific study sites. The levels of exposure were otherwise similar between two time periods within the last decade (DEMOCOPHES - 2011–2012 vs. HBM4EU Aligned Studies, 2014–2020). The age-dependent alert values for Cd in urine were exceeded by 16% of the study participants. Exceedances in the different studies and locations ranged from 1.4% up to 42%. The studies with largest extent of exceedance were from France and Poland. Association analysis with individual food consumption data available from participants’ questionnaires showed an important contribution of vegetarian diet to the overall exposure, with 35% higher levels in vegetarians as opposed to non-vegetarians. For comparison, increase in Cd levels due to smoking was 25%. Using NUTS2-level external data, positive associations between HBM data and percentage of cropland and consumption of Cd-containing mineral phosphate fertilizer were revealed, which indicates a significant contribution of mineral phosphate fertilizers to human Cd exposure through diet. In addition to diet, traffic and point source release were identified as significant sources of exposure in the study population. The findings of the study support the recommendation by EFSA to reduce Cd exposure as also the estimated mean dietary exposure of adults in the EU is close or slightly exceeding the tolerable weekly intake. It also indicates that regulations are not protecting the population sufficiently.The HBM4EU project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 733032. Co-funding for the HBM4EU Aligned Studies has been provided by the national programs: Sant´e Publique France and the French ministries of Health and the Environment (ESTEBAN, France); MEYS (No. LM2018121), and Cetocoen Plus project (CZ.02.1.01/0.0/ 0.0/15_003/0000469) (CELSPAC:YA, Czech Republic); the Ministry of Science and Higher Education of Poland (contract no.3764/H2020/ 2017/2) (POALES, Poland); Public Health Fund (Diet_HBM, Iceland); Croatian Institute of Public Health (HBM survey in Croatia); National Institute of Health Dr Ricardo Jorge (INSEF_ExpoQuim, Portugal); German Ministry for the Environment, Nature Conservation, Nuclear Safety and Consumer Protection (BMUV) (ESB, Germany); Luxembourg Institute of Health (LIH), the Laboratoire national de sant´e (human biomonitoring part), the Ministry of Higher Education and Research of Luxembourg and the Ministry of Health of Luxembourg (Oriscav-Lux2, Luxembourg); Candy Foundation (Nos. 2017–224 and 2020–344), Absalon Foundation (No. F-23653-01), The Danish Environmental Protection Agency (Miljøstyrelsen: MST-621-00012 Center on Endocrine Disrupters), The Research council of Capital Region of Denmark (No. E− 22717-11), Research council of Rigshospitalet (Nos. E− 22717-12, E− 22717-07, E− 22717-08), Aase og Ejnar Danielsens Fond (No. 10–001874), International Research and Research Training Centre for Male Reproduction and Child Health (EDMaRC, No. 1500321/1604357) (CPHMINIPUB (parents) and DYMS, Denmark). J.Kl. and L.A. thank the CETOCOEN EXCELLENCE project No. CZ.02.1.01/0.0/0.0/17_043/ 0009632 financed by MEYS for supportive background, and supported from the European Union’s Horizon 2020 research and innovation program under grant agreement No. 857560.info:eu-repo/semantics/publishedVersio

    Physical and cognitive impact following SARS-CoV-2 infection in a large population-based case-control study

    Get PDF
    © 2023. The Author(s).BACKGROUND: Persistent symptoms are common after SARS-CoV-2 infection but correlation with objective measures is unclear. METHODS: We invited all 3098 adults who tested SARS-CoV-2 positive in Iceland before October 2020 to the deCODE Health Study. We compared multiple symptoms and physical measures between 1706 Icelanders with confirmed prior infection (cases) who participated, and 619 contemporary and 13,779 historical controls. Cases participated in the study 5-18 months after infection. RESULTS: Here we report that 41 of 88 symptoms are associated with prior infection, most significantly disturbed smell and taste, memory disturbance, and dyspnea. Measured objectively, cases had poorer smell and taste results, less grip strength, and poorer memory recall. Differences in grip strength and memory recall were small. No other objective measure associated with prior infection including heart rate, blood pressure, postural orthostatic tachycardia, oxygen saturation, exercise tolerance, hearing, and traditional inflammatory, cardiac, liver, and kidney blood biomarkers. There was no evidence of more anxiety or depression among cases. We estimate the prevalence of long Covid to be 7% at a median of 8 months after infection. CONCLUSIONS: We confirm that diverse symptoms are common months after SARS-CoV-2 infection but find few differences between cases and controls in objective parameters measured. These discrepancies between symptoms and physical measures suggest a more complicated contribution to symptoms related to prior infection than is captured with conventional tests. Traditional clinical assessment is not expected to be particularly informative in relating symptoms to a past SARS-CoV-2 infection.Peer reviewe

    EU-wide exposure data of 11 chemical substance groups from the HBM4EU Aligned Studies (2014–2021)

    Get PDF
    Funding Information: The authors would like to thank everybody who contributed to the HBM4EU Aligned Studies: the participating children, teenagers, adults and their families, the fieldworkers that collected the samples and database managers that made the information available to HBM4EU, the HBM4EU project partners, especially those from WP7 for developing all materials supporting the fieldwork, WP9 for organizing the QA/QC scheme under HBM4EU and all laboratories who performed the analytical measurements. We would like to acknowledge Sun Kyoung Jung from the National Institute of Environmental Research of South-Korea for providing the KoNEHS Cycle III results (crt adjusted). HBM4EU is co-financed under Horizon 2020 (grant agreement No 733032). The authors thank all principal investigators of the contributing studies for their participation and contribution to the HBM4EU Aligned Studies and the national program owners for their financial support. Further details on funding for all the participating studies can be found in the Supplemental Material, Table S12.As one of the core elements of the European Human Biomonitoring Initiative (HBM4EU) a human biomonitoring (HBM) survey was conducted in 23 countries to generate EU-wide comparable HBM data. This survey has built on existing HBM capacity in Europe by aligning national or regional HBM studies, referred to as the HBM4EU Aligned Studies. The HBM4EU Aligned Studies included a total of 10,795 participants of three age groups: (i) 3,576 children aged 6–12 years, (ii) 3,117 teenagers aged 12–18 years and (iii) 4,102 young adults aged 20–39 years. The participants were recruited between 2014 and 2021 in 11–12 countries per age group, geographically distributed across Europe. Depending on the age group, internal exposure to phthalates and the substitute DINCH, halogenated and organophosphorus flame retardants, per- and polyfluoroalkyl substances (PFASs), cadmium, bisphenols, polycyclic aromatic hydrocarbons (PAHs), arsenic species, acrylamide, mycotoxins (deoxynivalenol (total DON)), benzophenones and selected pesticides was assessed by measuring substance specific biomarkers subjected to stringent quality control programs for chemical analysis. For substance groups analyzed in different age groups higher average exposure levels were observed in the youngest age group, i.e., phthalates/DINCH in children versus teenagers, acrylamide and pesticides in children versus adults, benzophenones in teenagers versus adults. Many biomarkers in teenagers and adults varied significantly according to educational attainment, with higher exposure levels of bisphenols, phthalates, benzophenones, PAHs and acrylamide in participants (from households) with lower educational attainment, while teenagers from households with higher educational attainment have higher exposure levels for PFASs and arsenic. In children, a social gradient was only observed for the non-specific pyrethroid metabolite 3-PBA and di-isodecyl phthalate (DiDP), with higher levels in children from households with higher educational attainment. Geographical variations were seen for all exposure biomarkers. For 15 biomarkers, the available health-based HBM guidance values were exceeded with highest exceedance rates for toxicologically relevant arsenic in teenagers (40%), 3-PBA in children (36%), and between 11 and 14% for total DON, Σ (PFOA + PFNA + PFHxS + PFOS), bisphenol S and cadmium. The infrastructure and harmonized approach succeeded in obtaining comparable European wide internal exposure data for a prioritized set of 11 chemical groups. These data serve as a reference for comparison at the global level, provide a baseline to compare the efficacy of the European Commission's chemical strategy for sustainability and will give leverage to national policy makers for the implementation of targeted measures.publishersversionpublishe

    Harmonized human biomonitoring in European children, teenagers and adults: EU-wide exposure data of 11 chemical substance groups from the HBM4EU Aligned Studies (2014–2021)

    Get PDF
    HBM4EU is co-financed under Horizon 2020 (grant agreement No 733032).As one of the core elements of the European Human Biomonitoring Initiative (HBM4EU) a human biomonitoring (HBM) survey was conducted in 23 countries to generate EU-wide comparable HBM data. This survey has built on existing HBM capacity in Europe by aligning national or regional HBM studies, referred to as the HBM4EU Aligned Studies. The HBM4EU Aligned Studies included a total of 10,795 participants from three age groups: (i) 3,576 children aged 6-12 years, (ii) 3,117 teenagers aged 12-18 years, and (iii) 4,102 young adults aged 20-39 years. The participants were recruited between 2014 and 2021 in 11-12 countries per age group, geographically distributed across Europe. Depending on the age group, internal exposure to phthalates and the substitute DINCH, halogenated and organophosphorus flame retardants, per- and polyfluoroalkyl substances (PFASs), cadmium, bisphenols, polycyclic aromatic hydrocarbons (PAHs), arsenic species, acrylamide, mycotoxins (deoxynivalenol (total DON)), benzophenones and selected pesticides was assessed by measuring substance specific biomarkers subjected to stringent quality control programs for chemical analysis. For substance groups analyzed in different age groups higher average exposure levels were observed in the youngest age group, i.e., phthalates/DINCH in children versus teenagers, acrylamide and pesticides in children versus adults, and benzophenones in teenagers versus adults. Many biomarkers in teenagers and adults varied significantly according to educational attainment, with higher exposure levels of bisphenols, phthalates, benzophenones, PAHs, and acrylamide in participants (from households) with lower educational attainment, while teenagers from households with higher educational attainment have higher exposure levels for PFASs and arsenic. In children, a social gradient was only observed for the non-specific pyrethroid metabolite 3-PBA and di-isodecyl phthalate (DiDP), with higher levels in children from households with higher educational attainment. Geographical variations were seen for all exposure biomarkers. For 15 biomarkers, the available health-based HBM guidance values were exceeded with the highest exceedance rates for toxicologically relevant arsenic in teenagers (40%), 3-PBA in children (36%), and between 11 and 14% for total DON, Σ (PFOA + PFNA + PFHxS + PFOS), bisphenol S and cadmium. The infrastructure and harmonized approach succeeded in obtaining comparable European-wide internal exposure data for a prioritized set of 11 chemical groups. These data serve as a reference for comparison at the global level, provide a baseline to compare the efficacy of the European Commission's chemical strategy for sustainability, and will give leverage to national policymakers for the implementation of targeted measures.info:eu-repo/semantics/publishedVersio

    Harmonized human biomonitoring in European children, teenagers and adults : EU-wide exposure data of 11 chemical substance groups from the HBM4EU Aligned Studies (2014–2021)

    Get PDF
    Funding Information: The authors would like to thank everybody who contributed to the HBM4EU Aligned Studies: the participating children, teenagers, adults and their families, the fieldworkers that collected the samples and database managers that made the information available to HBM4EU, the HBM4EU project partners, especially those from WP7 for developing all materials supporting the fieldwork, WP9 for organizing the QA/QC scheme under HBM4EU and all laboratories who performed the analytical measurements. We would like to acknowledge Sun Kyoung Jung from the National Institute of Environmental Research of South-Korea for providing the KoNEHS Cycle III results (crt adjusted). HBM4EU is co-financed under Horizon 2020 (grant agreement No 733032). The authors thank all principal investigators of the contributing studies for their participation and contribution to the HBM4EU Aligned Studies and the national program owners for their financial support. Further details on funding for all the participating studies can be found in the Supplemental Material, Table S12. Funding Information: The authors would like to thank everybody who contributed to the HBM4EU Aligned Studies: the participating children, teenagers, adults and their families, the fieldworkers that collected the samples and database managers that made the information available to HBM4EU, the HBM4EU project partners, especially those from WP7 for developing all materials supporting the fieldwork, WP9 for organizing the QA/QC scheme under HBM4EU and all laboratories who performed the analytical measurements. We would like to acknowledge Sun Kyoung Jung from the National Institute of Environmental Research of South-Korea for providing the KoNEHS Cycle III results (crt adjusted). HBM4EU is co-financed under Horizon 2020 (grant agreement No 733032). The authors thank all principal investigators of the contributing studies for their participation and contribution to the HBM4EU Aligned Studies and the national program owners for their financial support. Further details on funding for all the participating studies can be found in the Supplemental Material, Table S12 . Publisher Copyright: © 2023 The AuthorsAs one of the core elements of the European Human Biomonitoring Initiative (HBM4EU) a human biomonitoring (HBM) survey was conducted in 23 countries to generate EU-wide comparable HBM data. This survey has built on existing HBM capacity in Europe by aligning national or regional HBM studies, referred to as the HBM4EU Aligned Studies. The HBM4EU Aligned Studies included a total of 10,795 participants of three age groups: (i) 3,576 children aged 6–12 years, (ii) 3,117 teenagers aged 12–18 years and (iii) 4,102 young adults aged 20–39 years. The participants were recruited between 2014 and 2021 in 11–12 countries per age group, geographically distributed across Europe. Depending on the age group, internal exposure to phthalates and the substitute DINCH, halogenated and organophosphorus flame retardants, per- and polyfluoroalkyl substances (PFASs), cadmium, bisphenols, polycyclic aromatic hydrocarbons (PAHs), arsenic species, acrylamide, mycotoxins (deoxynivalenol (total DON)), benzophenones and selected pesticides was assessed by measuring substance specific biomarkers subjected to stringent quality control programs for chemical analysis. For substance groups analyzed in different age groups higher average exposure levels were observed in the youngest age group, i.e., phthalates/DINCH in children versus teenagers, acrylamide and pesticides in children versus adults, benzophenones in teenagers versus adults. Many biomarkers in teenagers and adults varied significantly according to educational attainment, with higher exposure levels of bisphenols, phthalates, benzophenones, PAHs and acrylamide in participants (from households) with lower educational attainment, while teenagers from households with higher educational attainment have higher exposure levels for PFASs and arsenic. In children, a social gradient was only observed for the non-specific pyrethroid metabolite 3-PBA and di-isodecyl phthalate (DiDP), with higher levels in children from households with higher educational attainment. Geographical variations were seen for all exposure biomarkers. For 15 biomarkers, the available health-based HBM guidance values were exceeded with highest exceedance rates for toxicologically relevant arsenic in teenagers (40%), 3-PBA in children (36%), and between 11 and 14% for total DON, Σ (PFOA + PFNA + PFHxS + PFOS), bisphenol S and cadmium. The infrastructure and harmonized approach succeeded in obtaining comparable European wide internal exposure data for a prioritized set of 11 chemical groups. These data serve as a reference for comparison at the global level, provide a baseline to compare the efficacy of the European Commission's chemical strategy for sustainability and will give leverage to national policy makers for the implementation of targeted measures.Peer reviewe

    Time of scarcity horizons for technology metals, precious metals, base metals, superalloy metals, battery technology metals and infrastructure materials.

    No full text
    We have built a system dynamics model, WORLD6, that takes into account population, energy extraction, production and need, aspects social behaviour, material and metals recycling and important links to the economy. The model is ground-truthed by comparing with actual supply per person from 1900 till 2015 and run until 2400. Primary scarcity metrics are supply per person and year and stock-in-use per person. Results show that technology metals (antimony, bismuth, selenium, indium, gallium and germanium) will all peak in production before 2100. Precious metals will peak in production earlier, or before 2050. The base metals (copper, zinc) will have a roughly stable supply from 2050 till 2300, whereas the production of lead will be approximately the same from 1960 till 2400 and that of nickel will peak before 2050. The superalloy metals (molybdenum, niobium) will have a stable supply from around 2050 till 2400, but cobalt will be stable from 2100 till 2300 and then decline. The battery metal lithium will peak in production 2010, cobalt will be stable (as stated above) and rare earth´s will rise in use, particularly after 2100. When considering service capital per person (concrete, iron, aluminium, copper) the model predicts steady rise throughout the 21st century, with stabilization in the 22nd century. Our dynamic WORLD6 modelling results give clear indications that for the most important metals that are used in modern technology and in societal infrastructure there are limits and therefore careful circular economy programmes are necessary at the level of every nation so that metals do not become the centre of future conflicts

    The WORLD6 model for evaluation of natural resource sustainability considering metals, materials, energy, population and food.

    No full text
    A new model; WORLD6 was developed. WORLD6 differs from the earlier system dynamics world models in several aspects. Several modules link the economy, materials, metals, energy, population and politics in a dynamic system. The present version is a result of a dismantling of the World3 model (Meadows et al., 1972, 1992, 2004) with an extension and substitution of its resource module and economy module. The WORLD6 model has several sub-modules at present which are all dynamically linked: 1. Population and food module: The module contains the original World3 model from 1972 model and used again in 1992 and 2004. This was enhanced with a new module for phosphate rock extraction, fertilizer production and an agricultural unit of WORLD6. 2. Materials and metals module a. Materials: Phosphorus, cement, sand, gravel and cut stone. b. Metals: Copper, zinc, lead, silver, gold, Iron, chromium, manganese, nickel, aluminium, stainless steel, antimony, bismuth, cobalt, gallium, germanium, indium, cadmium, tellurium, selenium, lithium, platinum, palladium, rhodium, molybdenum, rhenium, niobium, tantalum, tin, wolfram (tungsten), titanium, zirconium, hafnium and rare earth metals.3. Economy module: The model has a new simplified global economy module, considering the major actors like households, businesses, and government. Disposable funds, investments and market price for every resource is simulated endogenously in the model for every resource: metals, materials, food and commodities. 4. Energy module: An energy model including the extraction of fossil fuels. Different types of oil, gas, and coal as well as the extraction dynamics and reprocessing of uranium and thorium, used in conventional and breeder reactor technologies, technological energy harvests and renewable energy. 5. Climate and biosphere module: A simplified CLIMATE change module, converting CO2 emissions to CO2 in the atmosphere, with increase in temperature and sea level rise

    A System Dynamics Assessment of the Supply of Molybdenum and Rhenium Used for Super-alloys and Specialty Steels, Using the WORLD6 Model

    No full text
    The extraction, supply, market price and recycling of the metals molybdenum and rhenium were modelled using an integrated system dynamics model. The resource estimates made here resulted in significantly larger estimates than earlier studies for molybdenum. Present molybdenum resources are about 75–80 million ton and about 7 million ton has been mined to date. The ultimately recoverable resources (URR) for molybdenum are about 65 million in primary resources and about 45 million ton in secondary sources, a total of about 111 million ton, and after considering technical extractability, evaluating several hundred different geological deposits, the extractable amount is about 90 million ton. For rhenium, URR is about 21,000 ton contained in mostly in molybdenum and copper, but some come from nickel, wolfram and platinum group metal ores. The model outputs show that molybdenum and rhenium are finite resources, and that they may become exhausted unless the degree of recycling will be significantly improved. Peak production is estimated to take place in 2060 for molybdenum and rhenium, with peak in stocks-in-use around 2090. The molybdenum and rhenium recycling rates are generally low. Both market intervention mechanisms and governance incentives should be used to increase recycling. The metal extraction and ore grades were modelled with good success when tested against observed data. The model predicts a significant decline in molybdenum supply after 2100 under the present demand combined with the present regime of recycling. The supply situation for rhenium is dependent on the situation applicable for molybdenum ore availability and rhenium recycling rate
    corecore