12 research outputs found

    Structures and functions of the C-Terminal domain of HIV-1 integration

    No full text
    L’Integrase du VIH est une ADN recombinase catalysant deux réactions qui permettent l'intégration de l'ADN viral dans l'ADN hôte. L’intégrase du VIH comprend 3 domaines : N-terminal impliqué dans la réaction de « 3' processing » et le transfert de brin, le domaine catalytique contenant le site actif et le domaine C-terminal liant l'ADN non-spécifiquement (CTD). Des recherches récentes mettent en évidence l'importance du CTD dans la liaison avec d'autres protéines virales comme la transcriptase inverse. Le but de la thèse était de comprendre les rôles et l'importance du domaine C-terminal de l’intégrase dans deux contextes : l'intégration dans la chromatine et la coévolution, avec l'objectif de comprendre le rôle de la multimerisation dans la fonction de l’intégrase. Globalement, les résultats de mon projet indiquent que l'IN-CTD joue un rôle important, en contribuant à la formation de multimères d'ordre supérieur importants pour la fonction de l’IN.HIV Integrase is a DNA recombinase that catalyzes two endonucleolytic reactions that allow the viral DNA integration into host DNA for replication and subsequent viral protein production. HIV Integrase consists of 3 structural and functional domains: The N-terminal zinc domain involved in 3’ processing and strand transfer, the catalytic core domain which contains the active site, and the C-terminal domain that binds DNA non- specifically. Recent research highlights the importance of the CTD in binding with other viral proteins such as Reverse Transcriptase. The aim of the thesis was to understand the roles and importance of the C-terminal domain of HIV-1 Integrase in two contexts: chromatin integration, and co-evolution, with the overall purpose of understanding the role of multimerization in IN function. Overall, results from my project indicate that the IN-CTD plays an important role, by contributing to the formation of higher order multimers that are important for IN functionality

    Structures et fonctions du domaine C-Terminal de l'intégrase du VIH-1

    No full text
    HIV Integrase is a DNA recombinase that catalyzes two endonucleolytic reactions that allow the viral DNA integration into host DNA for replication and subsequent viral protein production. HIV Integrase consists of 3 structural and functional domains: The N-terminal zinc domain involved in 3’ processing and strand transfer, the catalytic core domain which contains the active site, and the C-terminal domain that binds DNA non- specifically. Recent research highlights the importance of the CTD in binding with other viral proteins such as Reverse Transcriptase. The aim of the thesis was to understand the roles and importance of the C-terminal domain of HIV-1 Integrase in two contexts: chromatin integration, and co-evolution, with the overall purpose of understanding the role of multimerization in IN function. Overall, results from my project indicate that the IN-CTD plays an important role, by contributing to the formation of higher order multimers that are important for IN functionality.L’Integrase du VIH est une ADN recombinase catalysant deux réactions qui permettent l'intégration de l'ADN viral dans l'ADN hôte. L’intégrase du VIH comprend 3 domaines : N-terminal impliqué dans la réaction de « 3' processing » et le transfert de brin, le domaine catalytique contenant le site actif et le domaine C-terminal liant l'ADN non-spécifiquement (CTD). Des recherches récentes mettent en évidence l'importance du CTD dans la liaison avec d'autres protéines virales comme la transcriptase inverse. Le but de la thèse était de comprendre les rôles et l'importance du domaine C-terminal de l’intégrase dans deux contextes : l'intégration dans la chromatine et la coévolution, avec l'objectif de comprendre le rôle de la multimerisation dans la fonction de l’intégrase. Globalement, les résultats de mon projet indiquent que l'IN-CTD joue un rôle important, en contribuant à la formation de multimères d'ordre supérieur importants pour la fonction de l’IN

    Structures and functions of the C-Terminal domain of HIV-1 integration

    No full text
    L’Integrase du VIH est une ADN recombinase catalysant deux réactions qui permettent l'intégration de l'ADN viral dans l'ADN hôte. L’intégrase du VIH comprend 3 domaines : N-terminal impliqué dans la réaction de « 3' processing » et le transfert de brin, le domaine catalytique contenant le site actif et le domaine C-terminal liant l'ADN non-spécifiquement (CTD). Des recherches récentes mettent en évidence l'importance du CTD dans la liaison avec d'autres protéines virales comme la transcriptase inverse. Le but de la thèse était de comprendre les rôles et l'importance du domaine C-terminal de l’intégrase dans deux contextes : l'intégration dans la chromatine et la coévolution, avec l'objectif de comprendre le rôle de la multimerisation dans la fonction de l’intégrase. Globalement, les résultats de mon projet indiquent que l'IN-CTD joue un rôle important, en contribuant à la formation de multimères d'ordre supérieur importants pour la fonction de l’IN.HIV Integrase is a DNA recombinase that catalyzes two endonucleolytic reactions that allow the viral DNA integration into host DNA for replication and subsequent viral protein production. HIV Integrase consists of 3 structural and functional domains: The N-terminal zinc domain involved in 3’ processing and strand transfer, the catalytic core domain which contains the active site, and the C-terminal domain that binds DNA non- specifically. Recent research highlights the importance of the CTD in binding with other viral proteins such as Reverse Transcriptase. The aim of the thesis was to understand the roles and importance of the C-terminal domain of HIV-1 Integrase in two contexts: chromatin integration, and co-evolution, with the overall purpose of understanding the role of multimerization in IN function. Overall, results from my project indicate that the IN-CTD plays an important role, by contributing to the formation of higher order multimers that are important for IN functionality

    Nucleic Acids Res.

    Get PDF
    The integration of the retroviral genome into the chromatin of the infected cell is catalysed by the integrase (IN)center dot viral DNA complex (intasome). This process requires functional association between the integration complex and the nucleosomes. Direct intasome/histone contacts have been reported to modulate the interaction between the integration complex and the target DNA (tDNA). Both prototype foamy virus (PFV) and HIV-1 integrases can directly bind histone amino-terminal tails. We have further investigated this final association by studying the effect of isolated histone tails on HIV-1 integration. We show here that the binding of HIV-1 IN to a peptide derived from the H4 tail strongly stimulates integration catalysis in vitro. This stimulation was not observed with peptide tails from other variants or with alpha-retroviral (RAV) and spuma-retroviral PFV integrases. Biochemical analyses show that the peptide tail induces both an increase in the IN oligomerization state and affinity for the target DNA, which are associated with substantial structural rearrangements in the IN carboxy-terminal domain (CTD) observed by NMR. Our data indicate that the H4 peptide tail promotes the formation of active strand transfer complexes (STCs) and support an activation step of the incoming intasome at the contact of the histone tail

    Modulation of the functional association between the HIV-1 intasome and the nucleosome by histone amino-terminal tails

    Get PDF
    Abstract Background Stable insertion of the retroviral DNA genome into host chromatin requires the functional association between the intasome (integrase·viral DNA complex) and the nucleosome. The data from the literature suggest that direct protein–protein contacts between integrase and histones may be involved in anchoring the intasome to the nucleosome. Since histone tails are candidates for interactions with the incoming intasomes we have investigated whether they could participate in modulating the nucleosomal integration process. Results We show here that histone tails are required for an optimal association between HIV-1 integrase (IN) and the nucleosome for efficient integration. We also demonstrate direct interactions between IN and the amino-terminal tail of human histone H4 in vitro. Structure/function studies enabled us to identify amino acids in the carboxy-terminal domain of IN that are important for this interaction. Analysis of the nucleosome-binding properties of catalytically active mutated INs confirmed that their ability to engage the nucleosome for integration in vitro was affected. Pseudovirus particles bearing mutations that affect the IN/H4 association also showed impaired replication capacity due to altered integration and re-targeting of their insertion sites toward dynamic regions of the chromatin with lower nucleosome occupancy. Conclusions Collectively, our data support a functional association between HIV-1 IN and histone tails that promotes anchoring of the intasome to nucleosomes and optimal integration into chromatin

    All Mammalian Hedgehog Proteins Interact with Cell Adhesion Molecule, Down-regulated by Oncogenes (CDO) and Brother of CDO (BOC) in a Conserved Manner*

    No full text
    Hedgehog (Hh) signaling proteins stimulate cell proliferation, differentiation, and tissue patterning at multiple points in animal development. A single Hh homolog is present in Drosophila, but three Hh homologs, Sonic Hh, Indian Hh, and Desert Hh, are present in mammals. Distribution, movement, and reception of Hh signals are tightly regulated, and abnormal Hh signaling is associated with developmental defects and cancer. In addition to the integral membrane proteins Patched and Smoothened, members of the Drosophila Ihog family of adhesion-like molecules have recently been shown to bind Hh proteins with micromolar affinity and positively regulate Hh signaling. Cell adhesion molecule-related, down-regulated by oncogenes (CDO) and Brother of CDO (BOC) are the closest mammalian relatives of Drosophila Ihog, and CDO binds Sonic Hh with micromolar affinity and positively regulates Hh signaling. Despite these similarities, structural and biochemical studies have shown that Ihog and CDO utilize nonorthologous domains and completely different binding modes to interact with cognate Hh proteins. We report here biochemical and x-ray structural studies of Sonic, Indian, and Desert Hh proteins both alone and complexed with active domains of CDO and BOC. These results show that all mammalian Hh proteins bind CDO and BOC in the same manner. We also show that interactions between Hh proteins and CDO are weakened at low pH. Formation of Hh-mediated Hh oligomers is thought to be an important feature of normal Hh signaling, but no conserved self-interaction between Hh proteins is apparent from inspection of 14 independent Hh-containing crystal lattices
    corecore