191 research outputs found

    Dosing-time makes the poison : circadian regulation and pharmacotherapy

    Get PDF
    Daily rhythms in physiology significantly modulate drug pharmacokinetics and pharmacodynamics according to the time-of-day, a finding that has led to the concept of chronopharmacology. The importance of biological clocks for xenobiotic metabolism has gained increased attention with the discovery of the molecular circadian clockwork. Mechanistic understanding of the cell-autonomous molecular circadian oscillator and the circadian timing system as a whole has opened new conceptual and methodological lines of investigation to understand first, the clock's impact on a specific drug's daily variations or the effects/side effects of environmental substances, and second, how clock-controlled pathways are coordinated within a given tissue or organism. Today, there is an increased understanding of the circadian modulation of drug effects. Moreover, several molecular strategies are being developed to treat disease-dependent and drug-induced clock disruptions in humans

    Clock gene Per2 as a controller of liver carcinogenesis

    Get PDF
    Environmental disruption of molecular clocks promoted liver carcinogenesis and accelerated cancer progression in rodents. We investigated the specific role of clock gene Period 2 (Per2) for liver carcinogenesis and clock-controlled cellular proliferation, genomic instability and inflammation. We assessed liver histopathology, and determined molecular and physiology circadian patterns in mice on chronic diethylnitrosamine (DEN) exposure according to constitutive Per2 mutation. First, we found that Per2m/m liver displayed profound alterations in proliferation gene expression, including c-Myc derepression, phase-advanced Wee1, and arrhythmic Ccnb1 and K-ras mRNA expressions, as well as deregulated inflammation, through arrhythmic liver IL-6 protein concentration, in the absence of any DEN exposure. These changes could then make Per2m/m mice more prone to subsequently develop liver cancers on DEN. Indeed, primary liver cancers were nearly fourfold as frequent in Per2m/m mice as compared to wild-type (WT), 4 months after DEN exposure. The liver molecular clock was severely disrupted throughout the whole carcinogenesis process, including the initiation stage, i.e. within the initial 17 days on DEN. Per2m/m further exhibited increased c-Myc and Ccnb1 mean 24h expressions, lack of P53 response, and arrhythmic ATM, Wee1 and Ccnb1 expressions. DEN-induced tumor related inflammation was further promoted through increased protein concentrations of liver IL-6 and TNF-α as compared to WT during carcinogenesis initiation. Per2 mutation severely deregulated liver gene or protein expressions related to three cancer hallmarks, including uncontrolled proliferation, genomic instability, and tumor promoting inflammation, and accelerated liver carcinogenesis several-fold. Clock gene Per2 acted here as a liver tumor suppressor from initiation to progression

    The protective effect of an aqueous extract from Smilax excelsa l. against carbon tetrachloride-induced liver injury in rats

    Get PDF
    Background: Because reactive oxygen species (ros) contribute to the pathogenesis of various acute and chronic liver diseases, dietary antioxidants and drugs from herbal origins have been proved to be beneficial as therapeutic agents in reversing hepatotoxicity and oxidative stress. The objective of this study was to investigate the protective effect of an aqueous extract from smilax excelsa l. Shoots and leaves against acute ccl4-induced liver injury as well as the changes in antioxidative defense system in female wistar albino rats.Materials and Methods: S. Excelsa extract was administered orally in doses of 100, 200 and 400 mg/kg body weight, once daily for 9 days. Acute hepatic toxicity was induced by intraperitoneal injection of ccl4 (1 ml/kg) on the 10th day. 24 h after ccl4 intoxication, biochemical and histopathological analyses were undertaken on sera and liver tissues.Results: Ccl4 challenge caused significant increases in the activities of liver enzymes as well as the levels of bilirubin, malondialdehyde and nitric oxide, while total serum protein levels and antioxidant defense system parameters were reduced significantly compared to the normal group. Administration of s. Excelsa extract at a dose of 400 mg/kg resulted in a suppression of ccl4-induced lipid peroxidation and altered oxidative stress parameters to nearly normal values in comparison to ccl4-treated rats. Nevertheless the extract did not reduce the extent of ccl4-induced mild liver injury, as seen by the histopathology of liver damage.Conclusion: The results of this study suggest that s. Excelsa could protect the liver tissues against ccl4-induced oxidative stress probably by increasing antioxidative defense activities.Keywords: Antioxidant enzymes, carbon tetrachloride, liver injury, smilax excelsa, hepatoprotective activit

    Circadian dysfunction in adipose tissue: Chronotherapy in metabolic diseases

    Get PDF
    Essential for survival and reproduction, the circadian timing system (CTS) regulates adaptation to cyclical changes such as the light/dark cycle, temperature change, and food availability. The regulation of energy homeostasis possesses rhythmic properties that correspond to constantly fluctuating needs for energy production and consumption. Adipose tissue is mainly responsible for energy storage and, thus, operates as one of the principal components of energy homeostasis regulation. In accordance with its roles in energy homeostasis, alterations in adipose tissue's physiological processes are associated with numerous pathologies, such as obesity and type 2 diabetes. These alterations also include changes in circadian rhythm. In the current review, we aim to summarize the current knowledge regarding the circadian rhythmicity of adipogenesis, lipolysis, adipokine secretion, browning, and non-shivering thermogenesis in adipose tissue and to evaluate possible links between those alterations and metabolic diseases. Based on this evaluation, potential therapeutic approaches, as well as clock genes as potential therapeutic targets, are also discussed in the context of chronotherapy

    A combined experimental and mathematical approach for molecular-based optimization of irinotecan circadian delivery

    Get PDF
    Circadian timing largely modifies efficacy and toxicity of many anticancer drugs. Recent findings suggest that optimal circadian delivery patterns depend on the patient genetic background. We present here a combined experimental and mathematical approach for the design of chronomodulated administration schedules tailored to the patient molecular profile. As a proof of concept we optimized exposure of Caco-2 colon cancer cells to irinotecan (CPT11), a cytotoxic drug approved for the treatment of colorectal cancer. CPT11 was bioactivated into SN38 and its efflux was mediated by ATP-Binding-Cassette (ABC) transporters in Caco-2 cells. After cell synchronization with a serum shock defining Circadian Time (CT) 0, circadian rhythms with a period of 26 h 50 (SD 63 min) were observed in the mRNA expression of clock genes REV-ERBα, PER2, BMAL1, the drug target topoisomerase 1 (TOP1), the activation enzyme carboxylesterase 2 (CES2), the deactivation enzyme UDP-glucuronosyltransferase 1, polypeptide A1 (UGT1A1), and efflux transporters ABCB1, ABCC1, ABCC2 and ABCG2. DNA-bound TOP1 protein amount in presence of CPT11, a marker of the drug PD, also displayed circadian variations. A mathematical model of CPT11 molecular pharmacokinetics-pharmacodynamics (PK-PD) was designed and fitted to experimental data. It predicted that CPT11 bioactivation was the main determinant of CPT11 PD circadian rhythm. We then adopted the therapeutics strategy of maximizing efficacy in non-synchronized cells, considered as cancer cells, under a constraint of maximum toxicity in synchronized cells, representing healthy ones. We considered exposure schemes in the form of an initial concentration of CPT11 given at a particular CT, over a duration ranging from 1 to 27 h. For any dose of CPT11, optimal exposure durations varied from 3h40 to 7h10. Optimal schemes started between CT2h10 and CT2h30, a time interval corresponding to 1h30 to 1h50 before the nadir of CPT11 bioactivation rhythm in healthy cells

    Critical cholangiocarcinogenesis control by cryptochrome clock genes

    Get PDF
    A coordinated network of molecular circadian clocks in individual cells generates 24-hour rhythms in liver metabolism and proliferation. Circadian disruption through chronic jet lag or Per2 clock gene mutation was shown to accelerate hepatocarcinoma development in mice. Since divergent effects were reported for clock genes Per and Cry regarding xenobiotic toxicity, we questioned the role of Cry1 and Cry2 in liver carcinogenesis. Male WT and Cry1-/-Cry2-/- mice (C57Bl/6 background) were chronically exposed to diethylnitrosamine (DEN) at ZT11. Rest-activity and body temperature rhythms were monitored using an implanted radiotransmitter. Serum aspartate and alanine aminotransferases (AST, ALT) were determined on four occasions during the progression stage. After 7 months, serum alkaline phosphatases (ALP) were determined, and livers were sampled for microscopic tumor nodule counting and histopathology. Five months after initiation of DEN treatment, we found that Cry1-/-Cry2-/- mice developed severe liver dysplasia, as evident from the increased AST, ALT and ALP levels, as compared to WT mice. DEN exposure induced primary liver cancers in nearly fivefold as many Cry1-/-Cry2-/- mice as compared to WT mice (p= 0.01). Microscopic study revealed no difference in the average number of hepatocarcinomas and a nearly 8-fold increase in the average number of cholangiocarcinomas in Cry1-/-Cry2-/- mice, as compared to WT mice. The study validated the hypothesis that molecular circadian clock disruption dramatically increased chemically-induced liver carcinogenesis. In addition, the pronounced shift towards cholangiocarcinoma in DEN exposed Cry1-/-Cry2-/- mice revealed a critical role of the Cry clock genes in bile duct carcinogenesis. This article is protected by copyright. All rights reserved

    THE PROTECTIVE EFFECT OF AN AQUEOUS EXTRACT FROM SMILAX EXCELSA L. AGAINST CARBON TETRACHLORIDE-INDUCED LIVER INJURY IN RATS

    Get PDF
    Background: Because reactive oxygen species (ros) contribute to the pathogenesis of various acute and chronic liver diseases, dietary antioxidants and drugs from herbal origins have been proved to be beneficial as therapeutic agents in reversing hepatotoxicity and oxidative stress. The objective of this study was to investigate the protective effect of an aqueous extract from smilax excelsa l. Shoots and leaves against acute ccl4-induced liver injury as well as the changes in antioxidative defense system in female wistar albino rats. Materials and Methods: S. Excelsa extract was administered orally in doses of 100, 200 and 400 mg/kg body weight, once daily for 9 days. Acute hepatic toxicity was induced by intraperitoneal injection of ccl4 (1 ml/kg) on the 10th day. 24 h after ccl4 intoxication, biochemical and histopathological analyses were undertaken on sera and liver tissues. Results: Ccl4 challenge caused significant increases in the activities of liver enzymes as well as the levels of bilirubin, malondialdehyde and nitric oxide, while total serum protein levels and antioxidant defense system parameters were reduced significantly compared to the normal group. Administration of s. Excelsa extract at a dose of 400 mg/kg resulted in a suppression of ccl4-induced lipid peroxidation and altered oxidative stress parameters to nearly normal values in comparison to ccl4-treated rats. Nevertheless the extract did not reduce the extent of ccl4-induced mild liver injury, as seen by the histopathology of liver damage. Conclusion: The results of this study suggest that s. Excelsa could protect the liver tissues against ccl4-induced oxidative stress probably by increasing antioxidative defense activities

    Diurnal changes in capecitabine clock-controlled metabolism enzymes are responsible for its pharmacokinetics in male mice

    Get PDF
    The circadian timing system controls absorption, distribution, metabolism, and elimination processes of drug pharmacokinetics over a 24-h period. Exposure of target tissues to the active form of the drug and cytotoxicity display variations depending on the chronopharmacokinetics. For anticancer drugs with narrow therapeutic ranges and dose-limiting side effects, it is particularly important to know the temporal changes in pharmacokinetics. A previous study indicated that pharmacokinetic profile of capecitabine was different depending on dosing time in rat. However, it is not known how such difference is attributed with respect to diurnal rhythm. Therefore, in this study, we evaluated capecitabine-metabolizing enzymes in a diurnal rhythm-dependent manner. To this end, C57BL/6J male mice were orally treated with 500 mg/kg capecitabine at ZT1, ZT7, ZT13, or ZT19. We then determined pharmacokinetics of capecitabine and its metabolites, 5 '-deoxy-5-fluorocytidine (5 ' DFCR), 5 '-deoxy-5-fluorouridine (5 ' DFUR), 5-fluorouracil (5-FU), in plasma and liver. Results revealed that plasma C-max and AUC(0-6h) (area under the plasma concentration-time curve from 0 to 6 h) values of capecitabine, 5 ' DFUR, and 5-FU were higher during the rest phase (ZT1 and ZT7) than the activity phase (ZT13 and ZT19) (p < 0.05). Similarly, C-max and AUC(0-6h) values of 5 ' DFUR and 5-FU in liver were higher during the rest phase than activity phase (p < 0.05), while there was no significant difference in liver concentrations of capecitabine and 5 ' DFCR. We determined the level of the enzymes responsible for the conversion of capecitabine and its metabolites at each ZT. Results indicated the levels of carboxylesterase 1 and 2, cytidine deaminase, uridine phosphorylase 2, and dihydropyrimidine dehydrogenase (p < 0.05) are being rhythmically regulated and, in turn, attributed different pharmacokinetics profiles of capecitabine and its metabolism. This study highlights the importance of capecitabine administration time to increase the efficacy with minimum adverse effects.Istanbul Universit
    • …
    corecore