24 research outputs found

    The Mid-Infrared Spectrum of the Zodiacal and Exozodiacal Light

    Get PDF
    The zodiacal light is the dominant source of the mid-infrared sky brightness seen from Earth, and exozodiacal light is the dominant emission from planetary and debris systems around other stars. We observed the zodiacal light spectrum with ISOCAM over 5-16 over a wide range of orientations relative to the Sun and the ecliptic. We present theoretical models for a wide range of particle size distributions and compositions. The observed temperature is as expected for large (>10 um radius), low-albedo (< 0.08), rapidly-rotating, grey particles 1 AU from the Sun. In addition to the continuum, we detect a weak excess in the 9-11 um range, with an amplitude of 6% of the continuum. The shape of the feature can be matched by a mixture of silicates: amorphous forsterite/olivine, dirty crystalline olivine, and a hydrous silicate (montmorillonite). The presence of hydrous silicate suggests the parent bodies of those particles were formed in the inner solar nebula. Large particles dominate the size distribution, but at least some small particles (radii ~1 um) are required to produce the silicate emission feature. To compare the properties of zodiacal dust to dust around other main sequence stars, we reanalyzed the exozodiacal light spectrum for Beta Pic. The exozodiacal spectra are dominated by cold dust, with emission peaking in the far-infrared, while the zodiacal spectrum peaks around 20 um. The shape of the silicate feature from Beta Pic is nearly identical to that derived from the ISO spectrum of 51 Oph; both exozodiacal features are very different from that of the zodiacal light. The exozodiacal features are roughly triangular, peaking at 10.3 um while the zodiacal feature is more boxy.Comment: accepted to Icaru

    Windows in the Milky Way

    Get PDF
    The objectives were twofold: (1) to study the IRAS emission levels in the vicinity of Baade's Window and in other optically transparent regions near the Galactic Center; and (2) to study the IRAS emission levels along sightlines in the Milky Way that exhibit very little CO emission. Tests were attempted to see whether the optically transparent 'windows' near the Galactic center can be identified (as FIR-weak regions) in the IRAS data base; and if so, whether the CO weak regions found elsewhere in the Milky Way represent similarly FIR weak and thus optically transparent sightlines through the Galaxy. The CO weak regions were also targeted in an effort to study the diffuse intercloud dust and its warming by the interstellar radiation field

    Operations and Performance of the PACS Instrument 3He Sorption Cooler on board of the Herschel Space Observatory

    Full text link
    A 3He sorption cooler produced the operational temperature of 285mK for the bolometer arrays of the Photodetector Array Camera and Spectrometer (PACS) instrument of the Herschel Space Observatory. This cooler provided a stable hold time between 60 and 73h, depending on the operational conditions of the instrument. The respective hold time could be determined by a simple functional relation established early on in the mission and reliably applied by the scientific mission planning for the entire mission. After exhaustion of the liquid 3He due to the heat input by the detector arrays, the cooler was recycled for the next operational period following a well established automatic procedure. We give an overview of the cooler operations and performance over the entire mission and distinguishing in-between the start conditions for the cooler recycling and the two main modes of PACS photometer operations. As a spin-off, the cooler recycling temperature effects on the Herschel cryostat 4He bath were utilized as an alternative method to dedicated Direct Liquid Helium Content Measurements in determining the lifetime of the liquid Helium coolant.Comment: 34 pages, 13 figures, accepted in Experimental Astronom

    Impacts of The Radiation Environment At L2 On Bolometers Onboard The Herschel Space Observatory

    Full text link
    We present the effects of cosmic rays on the detectors onboard the Herschel satellite. We describe in particular the glitches observed on the two types of cryogenic far- infrared bolometer inside the two instruments PACS and SPIRE. The glitch rates are also reported since the launch together with the SREM radiation monitors aboard Herschel and Planck spacecrafts. Both have been injected around the Lagrangian point L2 on May 2009. This allows probing the radiation environment around this orbit. The impacts on the observation are finally summarized.Comment: 8 pages, 13 figures, 2 images, Author Keywords: Bolometers, Infrared detectors, cryogenics, radiation effects, submillimeter wave technology IEEE Terms: Bolometers, Detectors, Instruments, Picture archiving and communication systems, Protons, Silicon, Space vehicles; Radiation and Its Effects on Components and Systems (RADECS), 2011 12th European Conference. Conference location: Sevilla. Date of Conference: 19-23 Sept. 2011. Session H: Radiation Environment: Space, Atmospheric and Terrestrial (PH2

    The Herschel PACS photometer calibration - A time dependent flux calibration for the PACS chopped point-source photometry AOT mode

    Full text link
    We present a flux calibration scheme for the PACS chopped point-source photometry observing mode based on the photometry of five stellar standard sources. This mode was used for science observations only early in the mission. Later, it was only used for pointing and flux calibration measurements. Its calibration turns this type of observation into fully validated data products in the Herschel Science Archive. Systematic differences in calibration with regard to the principal photometer observation mode, the scan map, are derived and amount to 5-6%. An empirical method to calibrate out an apparent response drift during the first 300 Operational Days is presented. The relative photometric calibration accuracy (repeatability) is as good as 1% in the blue and green band and up to 5% in the red band. Like for the scan map mode, inconsistencies among the stellar calibration models become visible and amount to 2% for the five standard stars used. The absolute calibration accuracy is therefore mainly limited by the model uncertainty, which is 5% for all three bands.Comment: 20 pages, 7 pages of appendix, 11 figures, accepted to appear in Experimental Astronomy, Special Issue for Herschel Calibrations based on the "Herschel Calibration Workshop: Only the Best Data Products for the Legacy Archive", held at ESAC, 25 - 27 March 2013, http://herschel.esac.esa.int/CalibrationWorkshop5.shtm

    The Spatial Distribution of Dust and Stellar Emission of the Magellanic Clouds

    Full text link
    We study the emission by dust and stars in the Large and Small Magellanic Clouds, a pair of low-metallicity nearby galaxies, as traced by their spatially resolved spectral energy distributions (SEDs). This project combines Herschel Space Observatory PACS and SPIRE far-infrared photometry with other data at infrared and optical wavelengths. We build maps of dust and stellar luminosity and mass of both Magellanic Clouds, and analyze the spatial distribution of dust/stellar luminosity and mass ratios. These ratios vary considerably throughout the galaxies, generally between the range 0.01Ldust/L0.60.01\leq L_{\rm dust}/L_\ast\leq 0.6 and 104Mdust/M4×10310^{-4}\leq M_{\rm dust}/M_\ast\leq 4\times10^{-3}. We observe that the dust/stellar ratios depend on the interstellar medium (ISM) environment, such as the distance from currently or previously star-forming regions, and on the intensity of the interstellar radiation field (ISRF). In addition, we construct star formation rate (SFR) maps, and find that the SFR is correlated with the dust/stellar luminosity and dust temperature in both galaxies, demonstrating the relation between star formation, dust emission and heating, though these correlations exhibit substantial scatter.Comment: 15 pages, 18 figures; ApJ, in press; version published in the journal will have higher-resolution figure

    Localized Surface Plasmon Resonance of Metallic Nanoparticles--Optical Property Characterization for Rational Applications

    Get PDF
    在光的激发下金属纳米结构中的自由电子能够发生群体性的振荡,进而产生表面等离激元(SPP)。发生等离激元共振时,金属纳米结构会将光束缚在表面,并在表面产生极强的电场增强。表面等离激元有两种类型:一类具有传播的特点,其表面等离激元能够在表面传播,称之为propagatingSPP;另一类不具有传播性,共振局域在一个很小的金属结构中,称之为localizedSPP,即局域表面等离激元共振(LSPR)。金属纳米颗粒就具有很强的表面等离激元共振的(LSPR)性质,使其对光产生增强的吸收和增强的散射,并表现出相关的热、光电场增强和热电子等效应。近年,随着纳米科技的发展,金属纳米粒子的LSPR效应已经成为一...The collective oscillation of free electrons in metal nanostructures excited with light is called surface plasmon polaritons (SPP). The light will be confined to a small area on the surface under the resonance condition (SPR), thus a giant enhancement in the electric field will be produced. There are two kinds of surface plasmon polaritons (SPP): one is propagating plasmon polaritons (PSPP), which...学位:理学博士院系专业:化学化工学院_物理化学(含化学物理)学号:2052010015366
    corecore