170 research outputs found

    Crop-Friendly Bacteria Tapped To Battle Fungal Marauders

    Get PDF
    Soil-dwelling bacteria that depend on wheat and barley roots for their “room and board” could soon make good on their debt. Researchers are investigating the microbes’ potential to biologically control root-rot fungi that cause crop yield losses of 10-30 percent annually in the U.S. Pacific Northwest and other parts of the world. The bacteria are members of the genus Pseudomonas and include 11 strains that stymie the growth of Pythium and Rhizoctonia fungi, which are responsible for dampingoff and root-rot diseases of wheat and barley. The pathogens thrive in cool, moist soils and can reach especially high levels in crop fields where conservation tillage is practiced to save on fuel costs, avoid soil erosion, and attain other ecological and environmental benefits. “They’re most problematic to seedlings of spring crops that are 4 to 6 weeks old,” notes Pat Okubara, a geneticist in the Agricultural Research Service’s Root Diseases and Biological Control Research Unit in Pullman, Washington. “Fungicides are not very effective, and there are no resistant wheat or barley varieties yet,” she adds. Rotating wheat with nonhost crops is difficult too, because of the fungi’s extensive plant-host range. Over the past year, Okubara and university colleagues have evaluated the biocontrol potential of 26 Pseudomonas strains. From those, they chose 11 for further study based on 3 important characteristics: rapid colonization of and persistence on roots, high antifungal activity, and reduction of plant disease symptoms

    The promoter from SlREO, a highly-expressed, root-specific Solanum lycopersicum gene, directs expression to cortex of mature roots

    Get PDF
    Root-specific promoters are valuable tools for targeting transgene expression, but many of those already described have limitations to their general applicability. We present the expression characteristics of SlREO, a novel gene isolated from tomato (Solanum lycopersicum L.). This gene was highly expressed in roots but had a very low level of expression in aerial plant organs. A 2.4-kb region representing the SlREO promoter sequence was cloned upstream of the uidA GUS reporter gene and shown to direct expression in the root cortex. In mature, glasshouse-grown plants this strict root specificity was maintained. Furthermore, promoter activity was unaffected by dehydration or wounding stress but was somewhat suppressed by exposure to NaCl, salicylic acid and jasmonic acid. The predicted protein sequence of SlREO contains a domain found in enzymes of the 2-oxoglutarate and Fe(II)-dependent dioxygenase superfamily. The novel SlREO promoter has properties ideal for applications requiring strong and specific gene expression in the bulk of tomato root tissue growing in soil, and is also likely to be useful in other Solanaceous crop

    Antibody-mediated Prevention of Fusarium Mycotoxins in the Field

    Get PDF
    Fusarium mycotoxins directly accumulated in grains during the infection of wheat and other cereal crops by Fusarium head blight (FHB) pathogens are detrimental to humans and domesticated animals. Prevention of the mycotoxins via the development of FHB-resistant varieties has been a challenge due to the scarcity of natural resistance against FHB pathogens. Various antibodies specific to Fusarium fungi and mycotoxins are widely used in immunoassays and antibody-mediated resistance in planta against Fusarium pathogens has been demonstrated. Antibodies fused to antifungal proteins have been shown to confer a very significantly enhanced Fusarium resistance in transgenic plants. Thus, antibody fusions hold great promise as an effective tool for the prevention of mycotoxin contaminations in cereal grains. This review highlights the utilization of protective antibodies derived from phage display to increase endogenous resistance of wheat to FHB pathogens and consequently to reduce mycotoxins in field. The role played by Fusarium-specific antibody in the resistance is also discussed
    • …
    corecore