65 research outputs found

    Controls on anastomosis in lowland river systems: Towards process-based solutions to habitat conservation

    Get PDF
    Anastomosing rivers were historically common around the world before extensive agricultural and industrial development in river valleys. Few lowland anastomosing rivers remain in temperate zones, and the protection of these river-floodplain systems is an international conservation priority. However, the mechanisms that drive the creation and maintenance of multiple channels, i.e. anabranches, are not well understood, particularly for lowland rivers, making it challenging to identify effective management strategies. This study uses a novel multi-scale, process-based hydro-geomorphological approach to investigate the natural and anthropogenic controls on anastomosis in lowland river reaches. Using a wide range of data (hydrologic, cartographic, remote-sensing, historical), the study (i) quantifies changes in the planform of the River Narew, Poland over the last 100 years, (ii) documents changes in the natural and anthropogenic factors that could be driving the geomorphic change, and (iii) develops a conceptual model of the controls of anastomosis. The results show that 110 km of anabranches have been lost from the Narew National Park (6810 ha), a 42% reduction in total anabranch length since 1900. The rates of anabranch loss have increased as the number of pressures inhibiting anabranch creation and maintenance has multiplied. The cessation of localized water level and channel management (fishing dams, water mills and timber rafting), the loss of traditional floodplain activities (seasonal mowing) and infrastructure construction (embanked roads and an upstream dam) are contributing to low water levels and flows, the deposition of sediment at anabranch inlets, the encroachment of common reed (Phragmites australis), and the eventual loss of anabranches. By identifying the processes driving the loss of anabranches, this study provides transferable insights into the controls of anastomosis in lowland rivers and the management solutions needed to preserve the unique anastomosing river pattern and diverse wet grasslands that are central to the conservation value of lowland floodplains

    A hierarchical approach on groundwater-surface water interaction in wetlands along the upper Biebrza River, Poland

    Get PDF
    This paper presents a hierarchical approach for quantifying and interpreting groundwater-surface water interaction in space and time. The results for the upper Biebrza show predominantly upward water fluxes, sections of recharge, however, exist along the reach. The fluxes depend more on hydraulic gradients than on riverbed conductivity. This indicates that the fluvio-plain scale is required for interpreting the exchange fluxes, which are estimated on a local scale. The paper shows that a conceptual framework is necessary for understanding the groundwater-surface water interaction processes, where the exchange fluxes are influenced by local factors like the composition of the riverbed and the position of the measurement on a local scale, and by regional factors like the hydrogeology and topography on a fluvio-plain scale. The hierarchical methodology increases the confidence in the estimated exchange fluxes and improves the process understanding. The accuracy of the measurements and related uncertainties, however, remain challenges for wetland environments. Gaining quantitative information on groundwatersurface water interaction can improve modeling confidence and as a consequence helps to develop effective procedures for management and conservation of valuable groundwater dependent wetlands

    Wetlands in flux: looking for the drivers in a central European case

    Get PDF
    © The Author(s) 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made

    Nutrients in tropical and temperate rivers and floodplains – comparison of the Rivers Songkhram (Thailand) and Narew (Poland)

    Get PDF
    Ecological processes in floodplains may function differently across climate regions. We compared the river discharge, water chemistry, and nutrient budget and balance of floodplain vegetation in a temperate climate (River Narew, Poland) with those in a tropical climate (River Songkhram, Thailand). Both rivers show a discharge regime with a flood pulse, following snowmelt (Narew) or monsoon rainfall (Songkhram), with peak discharges roughly 25 times higher in the River Songkhram. Electrical Conductivity (EC) values of both rivers are generally comparable, while nutrient concentrations are somewhat higher in the temperate River Narew (with total phosphorus (TP) approximately 1.5 and total inorganic nitrogen (TIN) approximately 2.2 times higher than in Songkhram). A comparison of the nutrient budget of floodplain vegetation suggests that soil is the most important source of nutrients for most vegetation types, i.e., Narew sedge (N), Narew forest floor (N and P), Songkhram bamboo (N and P), and Songkhram grass (P). Additionally, floodwater is the main input source of P for the Narew sedge and a secondary input source for Songkhram grass. Vegetation close to the river tends to have higher productivity, emphasizing the nutrient-filtering function of floodplain vegetation. For both rivers, nutrient input into the floodplains by floodwater is higher than nutrient export from the floodplains, indicating that both floodplains have a nutrient sink function. These findings demonstrate that the floodwater pulse is a source of nutrient input for floodplain vegetation in both temperate and tropical climates, with the soil playing a vital role in the nutrient budgets and balance

    Carbon and nutrient recycling ecotechnologies in three Baltic Sea river basins : the effectiveness in nutrient load reduction

    Get PDF
    There exist numerous ecotechnologies for recovery and reuse of carbon and nutrients from various waste streams before they are lost to runoff. However, it remains largely unknown how growing implementation of such ecotechnologies affect nutrient emissions to surface waters at catchment scale. Here, this knowledge gap is addressed by application of SWAT model in three case study catchments draining to the Baltic Sea: Vantaanjoki (Finland), Fyrisån (Sweden) and Słupia (Poland). Sustainability analysis with Multi-Criteria Analysis was applied in the stakeholder workshops in the case study areas to assess different ecotechnology alternatives. The following ecotechnologies received the highest sustainability scores: in Vantaanjoki anaerobic digestion, based on mostly agricultural residues; in Fyrisån source-separation of wastewaters; in Słupia nutrient extraction within the wastewater treatment process. The effect of application of digestate on agricultural soils in the Vantaanjoki catchment was simulated by adjusting the model parameters describing the organic carbon content and physical properties of soil. The results showed small reductions of nutrient loads to the Gulf of Finland. Larger reductions of nutrient loads to Lake Mälaren in Sweden and the Baltic Sea in Poland were achieved as a result of the wastewater treatment upgrades. In the Fyrisån catchment, higher relative reductions were simulated for TN than TP, and in dry years than in wet years. Although the studied ecotechnologies did not show as high effectiveness in nutrient load reduction as combinations of traditional Best Management Practices reported in literature, they do have other multiple benefits including crop yield increase, electricity, heat and bio-based fertilizer production

    Effect of Climate Change on Hydrology, Sediment and Nutrient Losses in Two Lowland Catchments in Poland

    Get PDF
    Future climate change is projected to have significant impact on water resources availability and quality in many parts of the world. The objective of this paper is to assess the effect of projected climate change on water quantity and quality in two lowland catchments (the Upper Narew and the Barycz) in Poland in two future periods (near future: 2021–2050, and far future: 2071– 2100). The hydrological model SWAT was driven by climate forcing data from an ensemble of nine bias-corrected General Circulation Models—Regional Climate Models (GCM-RCM) runs based on the Coordinated Downscaling Experiment—European Domain (EURO-CORDEX). Hydrological response to climate warming and wetter conditions (particularly in winter and spring) in both catchments includes: lower snowmelt, increased percolation and baseflow and higher runoff. Seasonal differences in the response between catchments can be explained by their properties (e.g., different thermal conditions and soil permeability). Projections suggest only moderate increases in sediment loss, occurring mainly in summer and winter. A sharper increase is projected in both catchments for TN losses, especially in the Barycz catchment characterized by a more intensive agriculture. The signal of change in annual TP losses is blurred by climate model uncertainty in the Barycz catchment, whereas a weak and uncertain increase is projected in the Upper Narew catchment

    Circular nutrient solutions for agriculture and wastewater : a review of technologies and practices

    Get PDF
    This paper summarizes key findings from a series of systematic reviews and comprehensive efforts to collate evidence and expert opinions on circular solutions for recovery and reuse of nutrients and carbon from different waste streams in the agriculture and wastewater sectors. We identify established and emerging approaches for transformation towards a more circular nutrient economy with relevance to SDGs 6 and 14. The paper cites the example of the Baltic Sea Region which has experienced decades of fertilizer overuse (1950s–1990s) and concomitant urban sources of excessive nutrients. Regulations and incentive policies combining the nitrogen, phosphorus and carbon cycles are necessary if circular nutrient technologies and practices are to be scaled up. Pricing chemical fertilizer at levels to reflect society’s call for circularity is a central challenge. Highlights • Development of a circular nutrient economy in the EU is reviewed. • The socio-economic value of organic waste products from agriculture & municipalities needs to increase. • Opportunities are found in the new EU Circular Economy Package & Fertilizing Products Regulations. • Further implementation is possible with the Common Agriculture Policy (nutrient management tool) and Waste Framework Directive for recycling. • The Baltic Sea Region case is explored being sensitive to eutrophication with ongoing international efforts to introduce nutrient circularity
    • …
    corecore