32 research outputs found

    Collective Autoionization in Multiply-Excited Systems: A novel ionization process observed in Helium Nanodroplets

    Get PDF
    Free electron lasers (FELs) offer the unprecedented capability to study reaction dynamics and image the structure of complex systems. When multiple photons are absorbed in complex systems, a plasma-like state is formed where many atoms are ionized on a femtosecond timescale. If multiphoton absorption is resonantly-enhanced, the system becomes electronically-excited prior to plasma formation, with subsequent decay paths which have been scarcely investigated to date. Here, we show using helium nanodroplets as an example that these systems can decay by a new type of process, named collective autoionization. In addition, we show that this process is surprisingly efficient, leading to ion abundances much greater than that of direct single-photon ionization. This novel collective ionization process is expected to be important in many other complex systems, e.g. macromolecules and nanoparticles, exposed to high intensity radiation fields

    Electronic and Magnetic Properties of Partially-Open Carbon Nanotubes

    Full text link
    On the basis of the spin-polarized density functional theory calculations, we demonstrate that partially-open carbon nanotubes (CNTs) observed in recent experiments have rich electronic and magnetic properties which depend on the degree of the opening. A partially-open armchair CNT is converted from a metal to a semiconductor, and then to a spin-polarized semiconductor by increasing the length of the opening on the wall. Spin-polarized states become increasingly more stable than nonmagnetic states as the length of the opening is further increased. In addition, external electric fields or chemical modifications are usable to control the electronic and magnetic properties of the system. We show that half-metallicity may be achieved and the spin current may be controlled by external electric fields or by asymmetric functionalization of the edges of the opening. Our findings suggest that partially-open CNTs may offer unique opportunities for the future development of nanoscale electronics and spintronics.Comment: 6 figures, to appear in J. Am. Chem. So

    A survey for variable young stars with small telescopes: VIII — Properties of 1687 Gaia selected members in 21 nearby clusters

    Get PDF
    The Hunting Outbursting Young Stars (HOYS) project performs long-term, optical, multi- filter, high cadence monitoring of 25 nearby young clusters and star forming regions. Utilising Gaia DR3 data we have identified about 17000 potential young stellar members in 45 coherent astrometric groups in these fields. Twenty one of them are clear young groups or clusters of stars within one kiloparsec and they contain 9143 Gaia selected potential members. The cluster distances, proper motions and membership numbers are determined. We analyse long term ( 7 yr) V, R, and I-band light curves from HOYS for 1687 of the potential cluster members. One quarter of the stars are variable in all three optical filters, and two thirds of these have light curves that are symmetric around the mean. Light curves affected by obscuration from circumstellar materials are more common than those affected by accretion bursts, by a factor of 2 – 4. The variability fraction in the clusters ranges from 10 to almost 100 percent, and correlates positively with the fraction of stars with detectable inner disks, indicating that a lot of variability is driven by the disk. About one in six variables shows detectable periodicity, mostly caused by magnetic spots. Two thirds of the periodic variables with disk excess emission are slow rotators, and amongst the stars without disk excess two thirds are fast rotators – in agreement with rotation being slowed down by the presence of a disk

    A survey for variable young stars with small telescopes – VIII. Properties of 1687 Gaia selected members in 21 nearby clusters

    Get PDF
    The Hunting Outbursting Young Stars (HOYS) project performs long-term, optical, multi-filter, high cadence monitoring of 25 nearby young clusters and star forming regions. Utilising Gaia DR3 data we have identified about 17000 potential young stellar members in 45 coherent astrometric groups in these fields. Twenty one of them are clear young groups or clusters of stars within one kiloparsec and they contain 9143 Gaia selected potential members. The cluster distances, proper motions and membership numbers are determined. We analyse long term (≈ 7 yr) V, R, and I-band light curves from HOYS for 1687 of the potential cluster members. One quarter of the stars are variable in all three optical filters, and two thirds of these have light curves that are symmetric around the mean. Light curves affected by obscuration from circumstellar materials are more common than those affected by accretion bursts, by a factor of 2 – 4. The variability fraction in the clusters ranges from 10 to almost 100 percent, and correlates positively with the fraction of stars with detectable inner disks, indicating that a lot of variability is driven by the disk. About one in six variables shows detectable periodicity, mostly caused by magnetic spots. Two thirds of the periodic variables with disk excess emission are slow rotators, and amongst the stars without disk excess two thirds are fast rotators – in agreement with rotation being slowed down by the presence of a disk

    Self-Dual Plane Nets in Crystal Chemistry

    No full text

    Marcasite and Pyrite (FeS2)

    No full text

    Providing Transformative ‘Exceptional Human Experiences’ in undergraduate Psychology teaching

    No full text
    This past year, staff in our department brought together their respective research expertise - Transpersonal Psychology; Positive Psychology; Jungian Psychology; and Parapsychology – to create a new options module, critically exploring a range of ‘exceptional’ human experiences (EHEs) not customarily explored in psychology courses. Such experiences encompass various altered states of consciousness, including flow, paranormal, spiritual, and synchronistic experiences, often described as ‘transformative’ in their nature. The development of the module coincided with the department’s purchase of the HTC Vive and an opportunity for a Technology Enhanced Active Learning (TEAL) approach. Students were offered the opportunity to experience a virtual EHE for themselves; such experiences included a space-walk, standing on top of Everest or the surface of another planet, deep-sea diving, zen-like environments, or any experience chosen by the student that reflected their personal ambitions or passions. The presentation, then, covers the utility of VR to enable psychology students to explore conceptually challenging ideas. It discusses the importance of creating a ‘safe’ environment especially within a module where students anticipate a perceptual shift. Given some physiological changes experienced with the VR-based EHEs, one of the proposed future directions is the capture of positive physiological data. The common outcome for some students, and staff, however, has been the realisation that simply being in a VR environment has itself been the transformative EHE
    corecore