13 research outputs found

    SARS-CoV-2 susceptibility and COVID-19 disease severity are associated with genetic variants affecting gene expression in a variety of tissues

    Get PDF
    Variability in SARS-CoV-2 susceptibility and COVID-19 disease severity between individuals is partly due to genetic factors. Here, we identify 4 genomic loci with suggestive associations for SARS-CoV-2 susceptibility and 19 for COVID-19 disease severity. Four of these 23 loci likely have an ethnicity-specific component. Genome-wide association study (GWAS) signals in 11 loci colocalize with expression quantitative trait loci (eQTLs) associated with the expression of 20 genes in 62 tissues/cell types (range: 1:43 tissues/gene), including lung, brain, heart, muscle, and skin as well as the digestive system and immune system. We perform genetic fine mapping to compute 99% credible SNP sets, which identify 10 GWAS loci that have eight or fewer SNPs in the credible set, including three loci with one single likely causal SNP. Our study suggests that the diverse symptoms and disease severity of COVID-19 observed between individuals is associated with variants across the genome, affecting gene expression levels in a wide variety of tissue types

    A first update on mapping the human genetic architecture of COVID-19

    Get PDF
    peer reviewe

    GPR30 Contributes to Estrogen-Induced Thymic Atrophy

    No full text
    The mechanisms by which prolonged estrogen exposures, such as estrogen therapy and pregnancy, reduce thymus weight, cellularity, and CD4 and CD8 phenotype expression, have not been well defined. In this study, the roles played by the membrane estrogen receptor, G protein-coupled receptor 30 (GPR30), and the intracellular estrogen receptors, estrogen receptor α (ERα) and β (ERβ), in 17β-estradiol (E2)-induced thymic atrophy were distinguished by construction and the side-by-side comparison of GPR30-deficient mice with ERα and ERβ gene-deficient mice. Our study shows that whereas ERα mediated exclusively the early developmental blockage of thymocytes, GPR30 was indispensable for thymocyte apoptosis that preferentially occurs in T cell receptor β chain−/low double-positive thymocytes. Additionally, G1, a specific GPR30 agonist, induces thymic atrophy and thymocyte apoptosis, but not developmental blockage. Finally, E2 treatment attenuates the activation of nuclear factor-κ B in CD25−CD4−CD8− double-negative thymocytes through an ERα-dependent yet ERβ- and GPR30-independent pathway. Differential inhibition of nuclear factor-κB by ERα and GPR30 might underlie their disparate physiological effects on thymocytes. Our study distinguishes, for the first time, the respective contributions of nuclear and membrane E2 receptors in negative regulation of thymic development
    corecore