482 research outputs found

    Genotype imputation methods for whole and complex genomic regions utilizing deep learning technology

    Get PDF
    Naito T., Okada Y.. Genotype imputation methods for whole and complex genomic regions utilizing deep learning technology. Journal of Human Genetics , (2024); https://doi.org/10.1038/s10038-023-01213-6.The imputation of unmeasured genotypes is essential in human genetic research, particularly in enhancing the power of genome-wide association studies and conducting subsequent fine-mapping. Recently, several deep learning-based genotype imputation methods for genome-wide variants with the capability of learning complex linkage disequilibrium patterns have been developed. Additionally, deep learning-based imputation has been applied to a distinct genomic region known as the major histocompatibility complex, referred to as HLA imputation. Despite their various advantages, the current deep learning-based genotype imputation methods do have certain limitations and have not yet become standard. These limitations include the modest accuracy improvement over statistical and conventional machine learning-based methods. However, their benefits include other aspects, such as their “reference-free” nature, which ensures complete privacy protection, and their higher computational efficiency. Furthermore, the continuing evolution of deep learning technologies is expected to contribute to further improvements in prediction accuracy and usability in the future

    Loci associated with N-glycosylation of human IgG are not associated with rheumatoid arthritis: a Mendelian randomisation study

    Get PDF
    Objectives: A recent study identified 16 genetic variants associated with N-glycosylation of human IgG. Several of the genomic regions where these single nucleotide polymorphisms (SNPs) reside have also been associated with autoimmune disease (AID) susceptibility, suggesting there may be pleiotropy (genetic sharing) between loci controlling both N-glycosylation and AIDs. We investigated this by testing variants associated with levels of IgG N-glycosylation for association with rheumatoid arthritis (RA) susceptibility using a Mendelian randomisation study, and testing a subset of these variants in a less well-powered study of treatment response and severity. Methods: SNPs showing association with IgG N-glycosylation were analysed for association with RA susceptibility in 14 361 RA cases and 43 923 controls. Five SNPs were tested for association with response to anti-tumour necrosis factor (TNF) therapy in 1081 RA patient samples and for association with radiological disease severity in 342 patients. Results: Only one SNP (rs9296009) associated with N-glycosylation showed an association (p=6.92×10–266) with RA susceptibility, although this was due to linkage disequilibrium with causal human leukocyte antigen (HLA) variants. Four regions of the genome harboured SNPs associated with both traits (shared loci); although statistical analysis indicated that the associations observed for the two traits are independent. No SNPs showed association with response to anti-TNF therapy. One SNP rs12342831 was modestly associated with Larsen score (p=0.05). Conclusions: In a large, well-powered cohort of RA patients, we show SNPs driving levels of N-glycosylation have no association with RA susceptibility, indicating colocalisation of associated SNPs are not necessarily indicative of a shared genetic background or a role for glycosylation in disease susceptibility

    Variants at HLA-A , HLA-C , and HLA-DQB1 Confer Risk of Psoriasis Vulgaris in Japanese

    Get PDF
    Psoriasis vulgaris (PsV) is an autoimmune disease of skin and joints with heterogeneity in epidemiologic and genetic landscapes of global populations. We conducted an initial genome-wide association study and a replication study of PsV in the Japanese population (606 PsV cases and 2,052 controls). We identified significant associations of the single nucleotide polymorphisms with PsV risk at TNFAIP3-interacting protein 1and the major histocompatibility complex region (P = 3.7 × 10−10 and 6.6 × 10−15, respectively). By updating the HLA imputation reference panel of Japanese (n = 908) to expand HLA gene coverage, we fine-mapped the HLA variants associated with PsV risk. Although we confirmed the PsV risk of HLA-C*06:02 (odds ratio = 6.36, P = 0.0015), its impact was relatively small compared with those in other populations due to rare allele frequency in Japanese (0.4% in controls). Alternatively, HLA-A*02:07, which corresponds to the cysteine residue at HLA-A amino acid position 99 (HLA-A Cys99), demonstrated the most significant association with PsV (odds ratio = 4.61, P = 1.2 × 10–10). In addition to HLA-A*02:07 and HLA-C*06:02, stepwise conditional analysis identified an independent PsV risk of HLA-DQβ1 Asp57 (odds ratio = 2.19, P = 1.9 × 10–6). Our PsV genome-wide association study in Japanese highlighted the genetic architecture of PsV, including the identification of HLA risk variants

    Multi-ancestry meta-analysis of asthma identifies novel associations and highlights the value of increased power and diversity

    Get PDF
    Publisher Copyright: © 2022 The Author(s)Asthma is a complex disease that varies widely in prevalence across populations. The extent to which genetic variation contributes to these disparities is unclear, as the genetics underlying asthma have been investigated primarily in populations of European descent. As part of the Global Biobank Meta-analysis Initiative, we conducted a large-scale genome-wide association study of asthma (153,763 cases and 1,647,022 controls) via meta-analysis across 22 biobanks spanning multiple ancestries. We discovered 179 asthma-associated loci, 49 of which were not previously reported. Despite the wide range in asthma prevalence among biobanks, we found largely consistent genetic effects across biobanks and ancestries. The meta-analysis also improved polygenic risk prediction in non-European populations compared with previous studies. Additionally, we found considerable genetic overlap between age-of-onset subtypes and between asthma and comorbid diseases. Our work underscores the multi-factorial nature of asthma development and offers insight into its shared genetic architecture.Peer reviewe

    A single centre retrospective analysis of AECG classification criteria for primary Sjogren\u27s syndrome based on 112 minor salivary gland biopsies in a Japanese population.

    Get PDF
    OBJECTIVE: To assess the usefulness and performance of the American European Consensus Group (AECG) criteria based on minor salivary gland biopsy (MSGB) in Japanese patients with primary SS. METHODS: Among 208 MSGB cases, we retrospectively selected 112 subjects who satisfied the complete set of AECG classification criteria. Of the 112 subjects studied, 63 primary SS patients and 49 non-SS group subjects were classified according to the AECG criteria. The contribution of subjective and objective components was statistically analysed. RESULTS: Sex, dry eye, Saxon test, Schirmer\u27s test, anti-SSA/Ro antibody, MSGB grading and sialography statistically contributed to the diagnosis. Multiple logistic regression analysis showed that positive MSGB [odds ratio (OR) 105; 95% CI 13, 849), positive anti-SSA/Ro antibody (OR 96; 95% CI 10, 923), a positive Saxon test (OR 46; 95% CI, 6, 340) and the existence of dry eye (OR 8, 95% CI 2, 43) were associated with the diagnosis of primary SS. Among the components of the AECG criteria, MSGB and anti-SSA/Ro antibody were very strong contributors. Furthermore, the abnormal-finding positive rate in sialography significantly correlated with MSGB grading (P-value for trend = 0.0006), although other subjective and objective components were not associated with MSGB grading. CONCLUSION: The usefulness of the AECG criteria for Japanese primary SS patients was confirmed

    Association of Common Variants in TNFRSF13B, TNFSF13, and ANXA3 with Serum Levels of Non-Albumin Protein and Immunoglobulin Isotypes in Japanese

    Get PDF
    We performed a genome-wide association study (GWAS) on levels of serum total protein (TP), albumin (ALB), and non-albumin protein (NAP). We analyzed SNPs on autosomal chromosomes using data from 9,103 Japanese individuals, followed by a replication study of 1,600 additional individuals. We confirmed the previously- reported association of GCKR on chromosome 2p23.3 with serum ALB (rs1260326, Pmeta = 3.1×10−9), and additionally identified the significant genome-wide association of rs4985726 in TNFRSF13B on 17p11.2 with both TP and NAP (Pmeta = 1.2×10−14 and 7.1×10−24, respectively). For NAP, rs3803800 and rs11552708 in TNFSF13 on 17p13.1 (Pmeta = 7.2×10−15 and 7.5×10−10, respectively) as well as rs10007186 on 4q21.2 near ANXA3 (Pmeta = 1.3×10−9) also indicated significant associations. Interestingly, TNFRSF13B and TNFSF13 encode a tumor necrosis factor (TNF) receptor and its ligand, which together constitute an important receptor-ligand axis for B-cell homeostasis and immunoglobulin production. Furthermore, three SNPs, rs4985726, rs3803800, and rs11552708 in TNFRSF13B and TNFSF13, were indicated to be associated with serum levels of IgG (P<2.3×10−3) and IgM (P<0.018), while rs3803800 and rs11552708 were associated with IgA (P<0.013). Rs10007186 in 4q21.2 was associated with serum levels of IgA (P = 0.036), IgM (P = 0.019), and IgE (P = 4.9×10−4). Our results should add interesting knowledge about the regulation of major serum components

    Mechanistic Characterization of RASGRP1 Variants Identifies an hnRNP-K-Regulated Transcriptional Enhancer Contributing to SLE Susceptibility

    Get PDF
    Systemic lupus erythematosus (SLE) is an autoimmune disease with a strong genetic component. We recently identified a novel SLE susceptibility locus near RASGRP1, which governs the ERK/MAPK kinase cascade and B-/T-cell differentiation and development. However, precise causal RASGRP1 functional variant(s) and their mechanisms of action in SLE pathogenesis remain undefined. Our goal was to fine-map this locus, prioritize genetic variants likely to be functional, experimentally validate their biochemical mechanisms, and determine the contribution of these SNPs to SLE risk. We performed a meta-analysis across six Asian and European cohorts (9,529 cases; 22,462 controls), followed by in silico bioinformatic and epigenetic analyses to prioritize potentially functional SNPs. We experimentally validated the functional significance and mechanism of action of three SNPs in cultured T-cells. Meta-analysis identified 18 genome-wide significant (p &lt; 5 × 10−8) SNPs, mostly concentrated in two haplotype blocks, one intronic and the other intergenic. Epigenetic fine-mapping, allelic, eQTL, and imbalance analyses predicted three transcriptional regulatory regions with four SNPs (rs7170151, rs11631591-rs7173565, and rs9920715) prioritized for functional validation. Luciferase reporter assays indicated significant allele-specific enhancer activity for intronic rs7170151 and rs11631591-rs7173565 in T-lymphoid (Jurkat) cells, but not in HEK293 cells. Following up with EMSA, mass spectrometry, and ChIP-qPCR, we detected allele-dependent interactions between heterogeneous nuclear ribonucleoprotein K (hnRNP-K) and rs11631591. Furthermore, inhibition of hnRNP-K in Jurkat and primary T-cells downregulated RASGRP1 and ERK/MAPK signaling. Comprehensive association, bioinformatics, and epigenetic analyses yielded putative functional variants of RASGRP1, which were experimentally validated. Notably, intronic variant (rs11631591) is located in a cell type-specific enhancer sequence, where its risk allele binds to the hnRNP-K protein and modulates RASGRP1 expression in Jurkat and primary T-cells. As risk allele dosage of rs11631591 correlates with increased RASGRP1 expression and ERK activity, we suggest that this SNP may underlie SLE risk at this locus
    corecore