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SUMMARY
Asthma is a complex disease that varieswidely in prevalence across populations. The extent towhich genetic
variation contributes to these disparities is unclear, as the genetics underlying asthma have been investi-
gated primarily in populations of European descent. As part of the Global Biobank Meta-analysis Initiative,
we conducted a large-scale genome-wide association study of asthma (153,763 cases and 1,647,022
controls) via meta-analysis across 22 biobanks spanning multiple ancestries. We discovered 179 asthma-
associated loci, 49 of which were not previously reported. Despite the wide range in asthma prevalence
among biobanks, we found largely consistent genetic effects across biobanks and ancestries. The meta-
analysis also improved polygenic risk prediction in non-European populations compared with previous
studies. Additionally, we found considerable genetic overlap between age-of-onset subtypes and between
asthma and comorbid diseases. Our work underscores the multi-factorial nature of asthma development
and offers insight into its shared genetic architecture.
INTRODUCTION

Asthma is a complex and multi-factorial disease that affects mil-

lions of people worldwide, yet much of its genetic architecture

has eluded discovery. Genetic factors contribute substantially

to asthma risk, with heritability estimates from twin studies

ranging between 50% and 90%.1,2 Early genome-wide associa-

tion studies (GWASs) provided some evidence for the polygenic

architecture of asthma,3–5 but only in the past few years have

genomic studies of asthma collated large enough sample sizes

to more definitively articulate its polygenicity.6 The most recent

GWAS of asthma discovered 167 asthma-associated loci across

the genome.7 However, these risk loci only account for a small

proportion of the total heritability of asthma. Furthermore, the

discovery GWAS, like the majority of previous asthma GWASs,
Cell
This is an open access article under the CC BY-N
were primarily conducted in populations of European ancestry.

Somemajor exceptions are the EVE Consortium,8 one of the first

efforts to perform GWASs in populations of African American,

African-Caribbean, and Latino ancestries, as well as the Trans-

national Asthma Genetic Consortium (TAGC),9 which included

modest sample sizes from populations of African, Japanese,

and Latino ancestries in their meta-analysis. As these studies

noted, efforts to conduct asthma GWASs in diverse populations

are particularly important because the prevalence of asthma

varies widely around the world. Surveys of asthma worldwide

have found that prevalence can vary by as much as 21-fold

among countries.10,11 Within countries, prevalence of asthma

ranges considerably as well,12 and this variation cannot be

attributed to any single known risk factor such as air pollution.

Rather, the contributing genetic and environmental factors are
Genomics 2, 100212, December 14, 2022 ª 2022 The Author(s). 1
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complex. Therefore, assessing the genetic architecture of

asthma in diverse cohorts is critical to gaining a more compre-

hensive understanding of asthma risk.

This heterogeneity in prevalence is mirrored by, and may be a

consequence of, the heterogeneity of the disease itself. Thewide

variability in underlying mechanistic pathways and clinical

presentations of asthma has led to a shift away from its charac-

terization as a single disease entity.13–15 Instead, asthma is

now commonly viewed as a syndrome encompassing several

distinct yet inter-related diseases, each driven by a unique set

of genetic and non-genetic risk factors.13,14 Different subgroups

of asthma, for example, share genetic components with various

comorbid diseases, including other respiratory diseases such as

chronic obstructive pulmonary disease (COPD), allergic dis-

eases, obesity, and neuropsychiatric disorders.16–22 This

complexity in turn complicates standards for defining pheno-

types to study; for example, one study found that nearly 60

different definitions of ‘‘childhood asthma’’ were used across

more than 100 studies in the literature.23 The heterogeneity of

asthma thus presents many challenges in identifying genetic

risk factors for asthma.

A greater understanding of the genetics underlying asthma

risk can facilitate the development of more accurate clinical

models of asthma that may help inform clinical intervention, pre-

vention, and management strategies.24 In particular, leveraging

GWAS associations for genetic risk prediction models, such as

polygenic risk scores (PRS), has shown potential in informing

preventive clinical decision-making for several polygenic dis-

eases.25–27 For asthma, PRS could ultimately play a role in

predicting disease severity and development in the clinical

setting and serve as a tool for investigating gene-environment in-

teractions in the research setting. So far, some GWASs have

been applied to developing PRS for asthma,28–32 but these

models have had limited predictive ability, likely attributable to

the insufficient sample sizes and diversity of existing datasets

of asthma. This underscores the genetic complexity of asthma

and highlights the need for more large-scale genomic studies

of asthma.

To more deeply interrogate the genetic architecture of

asthma across different populations through genetic discovery

and prediction, we analyzed paired phenotypic and genetic

data from the Global Biobank Meta-analysis Initiative (GBMI).

Participating biobanks shared summary statistics for the

meta-analyses of 14 disease endpoints: asthma, COPD, heart

failure, stroke, gout, venous thromboembolism, primary open-

angle glaucoma, abdominal aortic aneurysm, idiopathic pulmo-

nary fibrosis, thyroid cancer, cardiomyopathy, uterine cancer,

acute appendicitis, and appendectomy.33 More details on the

selection of these disease endpoints can be found in Zhou

et al.33 Compared with previous asthma resources and studies,

this collaborative effort increased both the sample size and di-

versity of asthma cases by many-fold, covered more variants

with high imputation quality, and harmonized phenotypes using

consistent electronic health record definitions for asthma

across datasets. Harnessing this resource, we identify 49 loci

not previously associated with asthma. Despite prevalence dif-

ferences of nearly an order of magnitude, we also demonstrate

remarkable consistency of genetic effects across the biobanks
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and ancestries in the GBMI. Furthermore, we show that the

increased sample size and diversity of data from the GBMI im-

proves genetic risk prediction accuracy in multiple populations.

Finally, we show that this meta-analysis captures much of the

genetic architecture underlying asthma age-of-onset subtypes,

and we provide additional evidence for shared genetic archi-

tectures between asthma and comorbid diseases such as

COPD. Our findings highlight the need for future investigations

into how genetic effects shared across different asthma

subtypes and with different diseases contribute to the hetero-

geneity of asthma.

RESULTS

Multi-ancestry meta-analysis for asthma across 18
biobanks in the GBMI
To identify novel loci associated with asthma, we performed

fixed-effects inverse-variance weighted meta-analysis using

the harmonized GWAS summary statistics for asthma from 18

biobanks participating in the GBMI (Table S1). The combined

sample size from all discovery studies was 153,763 cases

and 1,647,022 controls, spanning individuals of European

(EUR), African (AFR), admixed American (AMR), East Asian

(EAS), Middle Eastern (MID), and Central and South Asian

(CSA) ancestry (Figures 1 and S1). The meta-analysis of

GWASs from four additional biobanks (9,991 cases and

63,605 controls) was used as an independent replication study

(Table S1). Despite the standardized phenotype definitions

used by each biobank, which included the asthma PheCode

and/or self-reported data (Table S3), the prevalence of asthma

varies widely across these biobanks, ranging from 3% in the

Taiwan Biobank (TWB) to 24% in the Mass General Brigham

Biobank (MGB). We applied pre- and post-GWAS quality con-

trol filters that resulted in 70.8 million single-nucleotide poly-

morphisms (SNPs) for meta-analysis; for downstream analyses

we analyzed SNPs present in at least two biobanks.33 The

meta-analysis identified 179 loci of genome-wide significance

(p < 5 3 10�8), 49 of which have not been previously reported

to be associated with asthma (Figures 2A and S2). These

potentially novel loci were defined so that the index variants,

or the most significant variants in each locus, were at least 1

Mb in distance from a previously discovered genome-wide

significant variant associated with asthma (STAR Methods).

Additionally, all but one index variant did not have a previously

discovered SNP in linkage disequilibrium (LD) at r2 > 0.07,

estimated using a reference panel from individuals in 1000

Genomes34 (Table S2). In the replication meta-analysis, 51 of

the 179 loci had index variants with a p value < 0.05, even

though the case numbers in the replication data were less

than 10% of the case numbers in the discovery data

(Table S2). 154 of the 179 index variants had consistent direc-

tions of effect in the discovery and replication meta-analyses.

We also found that the potentially novel associations had

smaller effect sizes on average compared with the previously

reported loci across the allele frequency spectrum (Figure 2B).

This illustrates that with the increased power and effective

sample size of the GBMI, we were able to uncover SNPs with

more modest effects on asthma.



Figure 1. 18 biobanks in the GBMI contrib-

uting discovery GWASs of asthma

Distribution of prevalence of asthma (left) and

number of cases of asthma (right) across biobanks

in the GBMI. Biobanks span different sampling

approaches (indicated by color on left) and an-

cestries (indicated by color on right). AFR, African;

AMR, admixed American; EAS, East Asian; MID,

Middle Eastern; EUR, European; CSA, Central and

South Asian. See also Figure S1 and Table S1.
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Because the GBMI meta-analysis includes data from the UK

Biobank (UKBB), we compared our results with the TAGC

meta-analysis results that did not include the UKBB GWAS to

facilitate analyses that require independent samples.9 Of the in-

dex variants within the top 179 loci in the GBMI, 122 were in the

TAGCmeta-analysis or had a tagging variant in high LD (r2 > 0.8)

in the TAGC study; 76 of these had p < 0.05 in the TAGC results.

We compared the effect sizes of these 76 SNPs in the GBMI and

the TAGC meta-analyses using a previously proposed Deming

regression method that considers standard errors in both effect

size estimates.35 We found that all 76 SNPs were directionally

consistent and aligned across the studies (Table S4 and

Figure S3).

Among the 49 novel loci, the index variants of six loci were

missense or in high LD (r2 > 0.8) with a missense variant

(Table S2). One of these SNPs, chr10:94279840:G:C (pmeta-

analysis = 2.5 3 10�9), resides in PLCE1, an autosomal reces-

sive nephrotic syndrome gene;36 a high prevalence of atopic

disorders, such as asthma, among children with nephrotic

syndrome has long been observed in the clinic, suggesting

potential shared pathways underlying asthma and nephrotic

syndrome.37 The asthma risk allele has also been previously

linked to lower blood pressure.38 The index SNPs chr14:

100883117:G:T (pmeta-analysis = 2.6 3 10�8) and chr19:

56222056:C:A (pmeta-analysis = 2.4 3 10�8) also implicate novel

genes, RTL1 and ZSCAN5A, respectively. RTL1 has been

found to play a role in muscle regeneration,39 and ZSCAN5A

has been linked to monocyte count.40 Additionally, three of

the novel index SNPs colocalized with fine-mapped cis

expression quantitative trait loci (eQTL) (Table S2). One of

these, chr19:49513502:C:T (pmeta-analysis = 7.98 3 10�9), impli-
Cell G
cates FCGRT, which regulates immuno-

globulin G recycling and is a potential

drug target for autoimmune neurolog-

ical disease therapies.41 The other

previously reported missense variants

replicated previous findings; among

these, chr4:102267552:C:T (p.Ala391

Thr, pmeta-analysis = 2.5 3 10�12) is a

highly pleiotropic variant in SLC39A8

that has been associated with many psy-

chiatric, neurologic, inflammatory, and

metabolic diseases42–48 and has been

demonstrated to disrupt manganese ho-

meostasis.49 Variants implicating well-

known asthma-associated genes with
large effects, such as IL1RL1, IL2RA, STAT6, IL33, GSDMB,

and TSLP, were replicated in the meta-analysis as well.

GWASs from diverse ancestries reveal shared genetic
architecture of asthma and improve power for genetic
discovery
Given that sample size, disease prevalence, ancestry, and sam-

pling approaches differed across the 18 discovery biobanks, we

investigated the consistency of the asthma-associated loci

across the biobanks and their attributes. We first implemented

an approach that estimates the correlation (rb) between the ef-

fects of the index variants of the 179 top loci in each biobank

GWAS and the corresponding meta-analysis excluding that bio-

bank.50 We observed that most biobanks have highly correlated

genetic effects with other biobanks (rb estimates close to 1)

(Table S5). To further interrogate the consistency of the index

variants in all biobanks, we computed the ratio of the effect

size of these SNPs in the biobank-specific GWAS over that in

the corresponding leave-that-biobank-out meta-analysis. We

found that the average per-biobank ratios were almost evenly

split between those greater than and less than 1 (Figure S4).

This indicates that any significant difference in effects likely

does not reflect technical artifacts in the meta-analysis or

GWAS procedures. We also applied Deming regression35 to

assess the alignment of the SNP effects in each biobank-specific

GWAS with the effects in the corresponding leave-that-biobank-

out meta-analysis and observed that the effect sizes were com-

parable across the biobanks (Figures 3A and S5). Furthermore,

the genome-wide genetic correlations between the biobanks

with non-zero heritability estimates and the respective leave-

that-biobank-out meta-analyses were all close to 1.33
enomics 2, 100212, December 14, 2022 3



Figure 2. Top loci associated with asthma

(A) Index variants of 49 asthma-associated loci that are potentially novel. Missense variants and cis-eQTLs fine-mapped with PIP > 0.9 that overlapped with an

index or tagging variant (r2 > 0.8) are annotated here. Frequency and meta-analysis effect size estimate of risk-increasing allele , with association p value, are

shown on the right.

(B) Frequency and effect size of risk alleles of all 179 index variants. Previously reported genes with large effect sizes are highlighted.

See also Figures S1 and S3; Tables S2 and S4.
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To test for potential heterogeneity in effect estimates due to

ascertainment, we conducted an additional sensitivity analysis

comparing SNP effects in the meta-analyses of the hospital-

versus population-based biobanks. We conducted meta-ana-

lyses of the nine population-based biobanks (China Kadoorie

Biobank [CKB], deCODE Genetics, Estonian Biobank [ESTBB],
4 Cell Genomics 2, 100212, December 14, 2022
East London Genes & Health [GNH], Generation Scotland [GS],

Trøndelag Health Study [HUNT], LifeLines, TWB, and UKBB)

and six hospital-based biobanks (BioBank Japan [BBJ], Mount

Sinai BioMe Biobank [BioMe], BioVU, Mass General Brigham

[MGB], Michigan Genomics Initiative [MGI], and ATLAS Commu-

nity Health Initiative [UCLA]). We then fitted the Deming



Figure 3. Consistency of loci across biobanks and asthma age-of-onset subtypes

(A) Regression slopes computed using the Deming regression method, which compared effects of index variants in each biobank GWAS against their effects in

the corresponding leave-that-biobank-out meta-analysis.23 The x axis shows the effective sample size of each biobank, computed as 4/(1/cases + 1/controls).

Error bars represent 95% confidence intervals of the regression slope estimates.

(B) Effect sizes of the index variants discovered in the all-asthmameta-analysis as estimated in the COA versus AOAmeta-analyses compared using the Deming

regressionmethod.35 The intercept was set to be 0; the slope estimated from the regression analysis is reported. Error bars represent 95% confidence intervals of

the effect size estimates from the corresponding meta-analysis.

See also Figures S4 and S5; Tables S5 and S11.
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regression35 on the effect size estimates of the loci identified by

the all-biobank meta-analysis, using the SNPs with p < 13 10�6

in both meta-analyses, and observed high consistency in the ef-

fects across the two groups (Figure S6).

Taken together, these analyses indicate that the genetic

architecture of asthma is largely shared across cohorts, despite

differences in characteristics such as disease prevalence and

ascertainment strategy. Furthermore, the consistency of genetic

effects across the biobanks suggests that the fixed-effects meta-

analysis approach is appropriate for the integration of GWASs

from the different datasets. We additionally conducted meta-

analysis using the meta-regression approach implemented in

MR-MEGA,51 which accounts for potential effect size heteroge-

neity across datasets. MR-MEGA identified only two additional

loci associated with asthma, one of which is novel (Table S6).

We also found little evidence of heterogeneity in the ancestry-

specific effect sizes for the index variants. One SNP, chr10:

9010779:G:A, was significantly heterogeneous (p value for Co-

chran’s Q test < 0.0003, the Bonferroni-corrected p value

threshold) across the ancestry-specific meta-analyses of AFR,

AMR, CSA, EAS, and EUR individuals (Figure 4A and Table S7).

One known SNP that nearly reached the Bonferroni-corrected p

value threshold for heterogeneity, chr16:27344041:G:A, dis-

played different effects in the EUR and EAS cohorts. This SNP

lies within an intron of IL4R (Figure 4B), which has known associ-

ations with asthma.6,52 Previous studies have investigated the

association of IL4R with asthma in different populations, with

inconsistent results, so future studies on the potential popula-

tion-specific effects of this genewill be needed.53–55 Our findings

demonstrate that despite broad consistency of effect sizes

across ancestries among the top loci, the increased power and

diversity of the GBMI enabled the detection of SNPs with signif-

icantly different effects across ancestries.

Additionally, the greater diversity of the GBMI facilitated the dis-

covery of loci that would not have been identified in association

analyses using data from only EUR ancestry cohorts. We found

that of the 179 loci identified in the all-biobank meta-analysis, 49

did not reach genome-wide significance in the EUR-only meta-

analysis (Table S8). This additional yield of loci may be partially

due to the increase in sample size, but the inclusion of GWASs

from diverse ancestries also enabled the identification of loci

that are more frequent in some non-EUR populations. 19 of these

49 loci were potentially novel, and 13 of these novel loci had an in-

dex variant higher in frequency in a non-EUR ancestry group

compared with the EUR ancestry group. The consistent effect es-

timates of the 49 additional variants across populations (45/49

had a p value for Cochran’s Q test across ancestries > 0.02) indi-

cate that the additional variants discovered with the incorporation

of GWASs from diverse ancestries do not tend to be population-

specific loci that only have effects in certain populations. Howev-

er, owing to differences in frequency across populations, it is

essential to conduct asthma GWASs in different populations to

uncover the full spectrum of asthma-associated loci.

Meta-analysis across diverse ancestries improves
asthma PRS accuracy
We next explored the impact of the increased sample sizes and

diversity in the GBMI on genome-wide risk prediction of asthma.
6 Cell Genomics 2, 100212, December 14, 2022
To establish a baseline understanding of PRS performance for

asthma as well as other disease endpoints in the GBMI, Wang

et al.56 evaluated and compared the prediction accuracy of

PRS derived from the pruning and thresholding (P + T) method

and PRSwith continuous shrinkage (PRS-CS)57 in target cohorts

of EUR, CSA, EAS, and AFR ancestries, using the leave-one-bio-

bank-out meta-analyses as discovery data. This study observed

improvements in prediction accuracy for asthma using PRS-CS

across all target cohorts (Figure S7), and additionally the PRS

derived from the GBMI leave-one-biobank-out meta-analyses

of asthma had higher predictive accuracy, as measured by R2

on the liability scale R2
liability, compared with the PRS constructed

from the TAGC meta-analysis9 (Figure 5).

To expand on these analyses, we tested a recently developed

extension of PRS-CS, PRS-CSx,58 for asthma risk prediction.

This method jointly models multiple summary statistics from

different ancestries to enable more accurate effect size estima-

tion for prediction. For input to PRS-CSx, we used the AFR,

AMR, EAS, CSA, and EUR ancestry-specific meta-analyses

from the GBMI; the discovery meta-analysis that matched the

ancestry of the target cohort excluded the target cohort (Fig-

ure S8). With the posterior SNP effect size estimates from

PRS-CSx, we tested the multi-ancestry PRS in the following

target populations: AFR ancestry individuals in UKBB, CSA

ancestry individuals in UKBB, a holdout set of EAS ancestry in-

dividuals in BBJ, and a holdout set of EUR ancestry individuals

in UKBB. The final prediction models tested in these target pop-

ulations were the optimal linear combinations of the population-

specific PRS. The average R2
liability in the EAS (0.053) and EUR

(0.054) target cohorts approached the SNP-based heritability

(h2SNP), estimated to be 0.085 for asthma using the all-biobank

meta-analysis,56 while the prediction accuracies in the CSA

(0.038) and AFR (0.014) target cohorts were lower (Figure 5

and Table S9). When we downsampled the EUR target cohort

to 1,000 individuals, to match the sample size of the EAS target

cohort, we found a higher average R2
liability (0.063) but, as ex-

pected, much larger confidence intervals (Figure S9). Estimates

may differ across biobanks and ancestries given differences in

disease prevalence, environmental exposures, phenotype defi-

nitions, and other factors, and these differences may in turn

contribute to the PRS in EAS individuals performing similarly to

PRS in EUR individuals in our analyses, despite the smaller sam-

ple size of the EAS discovery cohort. The R2
liability across the

target populations for the PRS-CSx scores were roughly the

same as the R2
liability of the PRS derived from the PRS-CS ana-

lyses. It is important to note that the discovery data used in the

PRS-CS analyses differed slightly in sample size and composi-

tion, since the leave-one-biobank-out approach was used for

PRS-CS, but the target cohorts in which the PRSwere evaluated

were the same (Table S10).

To investigate why improvement in performance using PRS-

CSx was only incremental in most of the target cohorts, we

examined the performances of each population-specific PRS.

We found that across all target cohorts, PRS derived from either

the EUR or EAS set of posterior effect size estimates outper-

formed the linear combination, and the R2
liability values of these

PRS were also higher compared to that of the PRS-CS scores

(Figure S10 and Table S9). This suggests that the addition of



Figure 4. Loci showing heterogeneity in ancestry-specific effect sizes

(A) Index variants with themost significant pCochran’s Q. Effect sizes of these variants in each ancestry-specific meta-analysis are shown. Error bars represent 95%

confidence intervals of effect size estimates.

(B) LocusZoom plots showing the association with asthma of chr16:27344041:G:A (purple symbol) and variants within 150 kb upstream and downstream. Color

coding of other SNPs indicates LD with this SNP. EUR, EAS, and AFR indicate the population from which LD information was estimated.

See also Table S7.
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more discovery GWASs to PRS-CSx can improve the accuracy

of PRS based on a single set of posterior effect size estimates,

but the linear combination of PRS from multiple GWASs does

not necessarily yield higher accuracy. This may be due to the

considerably smaller sample sizes of some of the input discovery
meta-analyses in our analyses and, thus, varying signal-to-noise

ratios. Collectively, these analyses show that the increase in

scale and diversity of discovery GWASs for PRS is the primary

driver of increased PRS accuracy in non-EUR populations for

asthma, with marginal gains using PRS-CSx over PRS-CS. For
Cell Genomics 2, 100212, December 14, 2022 7



Figure 5. PRS performance across ancestries

Each panel represents a target cohort in which PRS constructed using PRS-CSx and PRS-CS were evaluated. The reference dataset was the TAGC meta-

analysis.5 Sample sizes for the target cohorts are: cases = 849 and controls = 5,190 for AFR; cases = 500 and controls = 500 for EAS; cases = 1,164 and controls =

7,577 for EUR; cases = 1,232 and controls = 6,744 for CSA. Error bars represent standard deviation of R2 on the liability scale across 100 replicates. See also

Figure S10; Tables S9 and S10.
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EUR target cohorts, a multi-ancestry PRS construction method

such as PRS-CSx does not seem to contribute much improve-

ment in prediction accuracy, likely due to the predominating

sample size of EUR discovery GWASs as well as the inclusion

of GWASs from smaller, non-EUR discovery cohorts, which

may introduce more noise than signal.

Childhood-onset and adult-onset asthma are highly
genetically correlated
To increase power for genetic discovery, we used a broad

phenotype definition for asthma (STAR Methods) but, given the

heterogeneity of the disease, we sought to address the extent

to which this meta-analysis captured the genetic architectures

of two common subtypes of asthma, childhood-onset asthma

(COA) and adult-onset asthma (AOA). We conducted asthma

age-of-onset subtype analyses in two of the participating

GBMI biobanks for which age at asthma diagnosis information

were accessible, UKBB and FinnGen. Using a cutoff age of 19

years at asthma diagnosis to define the subtypes (STAR

Methods), we performed GWASs of COA and AOA in FinnGen

and the EUR ancestry cohort in UKBB, as well as fixed-effects,

inverse-variance weighted meta-analyses of the COA (20,964

cases and 674,014 controls) and AOA (56,744 cases and

674,014 controls) GWASs, respectively. Applying LD score cor-

relation (LDSC),59 we observed strong genetic correlations be-

tween each COA GWAS and the respective leave-that-bio-

bank-out meta-analysis of all other biobanks utilizing the broad

phenotype definition (rg [SE] = 0.73 [0.03], p = 4.70 3 10�132

for UKBB and rg [SE] = 0.80 [0.4], p = 3.19 3 10�73 for

FinnGen), and even larger genetic correlations between each

AOA GWAS and leave-that-biobank-out meta-analysis (rg [SE]

= 0.90 [0.04], p = 1.71 3 10�127 for UKBB and rg [SE] = 0.90

[0.30], p = 1.39 3 10�237 for FinnGen). The genetic correlation

between the COA and AOA meta-analyses was similarly high

(rg [SE] = 0.78 [0.30], p = 1.323 10�116) and similar to the genetic

correlation (rg [SE] = 0.67 [0.02]) reported by a previous study of
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asthma age-of-onset subtypes.60 We also observed substantial

overlap between the top loci identified in each subtype meta-

analysis and the all-asthma meta-analysis. 75 of the 90 loci

(83%) of genome-wide significance (p < 5 3 10�8) and 55 of

the 69 loci (80%) identified by the COA and AOA meta-analysis,

respectively, overlapped with a locus discovered in the all-

asthma meta-analysis (Table S11). Overall, these results

suggest that much of the genetic architecture between COA

and AOA is shared, as is consistent with previous findings.60,61

Despite the GBMI meta-analysis drawing from primarily adult

cohorts, many of the genetic variants identified contribute to

both subtypes.

To investigate whether the genetic effects of the index variants

of the asthma-associated loci differ across the subtypes, we

compared the estimated effect sizes of the 179 index variants

discovered in the all-asthma meta-analysis in the COA and

AOA meta-analyses using the Deming regression method. We

found that these variants had systematically stronger effects in

the COA meta-analysis compared with the AOA meta-analysis

(Figure 3B), supporting previous findings that the etiology of

COA is likely partially characterized by genes that have smaller

(or no) effects on AOA.60,61

Asthma and COPD have shared and distinct biological
processes
The shared genetic factors between asthma and different

diseases that often coexist with asthma, such as COPD, a late-

onset respiratory disease, have also been used to investigate

and characterize asthma heterogeneity. It has been well docu-

mented in the literature that asthma and COPD are frequent co-

morbidities of each other,62 but only a few studies thus far have

investigated the extent to which this is driven by a shared genetic

basis.63–65 Utilizing the GBMI meta-analyses of asthma and

COPD, we observed a strong genetic correlation between

asthma and COPD (rg [SE] = 0.67 [0.021], p = 1.55 3 10�226).

This genetic correlation estimate is higher than estimates from
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previous studies, which ranged from 0.38 to 0.42.64,65 This may

be a result of the discovery datasets used by these studies,

which were enriched for pediatric asthma cohorts, whereas the

GBMI biobanks are primarily composed of adult participants.

To more formally test for potential differences in the shared ge-

netic architecture of age-of-onset subtypes and COPD, we

computed genetic correlations between the COA and AOA

meta-analyses and the GBMI COPD meta-analysis. We found

that the AOA meta-analysis had a strong genetic correlation

with the COPD meta-analysis (rg [SE] = 0.60 [0.3], p =

2.65 3 10�94), while the COA meta-analysis had a more moder-

ate genetic correlation with the COPD meta-analysis (rg [SE] =

0.33 [0.3], p = 7.60 3 10�31).

To further evaluate the extent of genetic overlap between

asthma and COPD, we applied a gene and gene-set analysis

tool, Multi-marker Analysis of GenoMic Annotation (MAGMA),66

to the GBMI EUR, AFR, EAS, and CSA meta-analyses of asthma

as well as the GBMI EUR, AFR, and EAS meta-analyses of

COPD. After Bonferroni correction, we found that 442, 149,

and 6 genes were significantly associated with asthma in the

EUR (p < 2.50 3 10�6), EAS (p < 2.50 3 10�6), and CSA

(p < 2.52 3 10�6) populations, respectively, with no significantly

associated genes in the AFR cohort (all p > 2.51 3 10�6)

(Table S14). The majority of the genes associated with asthma

identified in the EAS meta-analysis overlapped with the genes

from the EUR meta-analysis (126 out of 149 genes), and all six

genes associated with asthma as identified in the CSA meta-

analysis were also significantly associated in the EUR and EAS

meta-analyses.We identified 46 and 33 genes significantly asso-

ciated with COPD in the EUR (p < 2.50 3 10�6) and EAS

(p < 2.503 10�6) cohorts, respectively, and, similarly to asthma,

no significantly associated genes from the AFRmeta-analysis (all

p > 2.51 3 10�6) (Table S15). Of the 75 genes associated with

COPD across the EUR and EAS meta-analyses, 24 overlapped

with the asthma-associated genes. We also conducted gene pri-

oritization using Data-driven Expression-Prioritized Integration

for Complex Traits (DEPICT)67 and gene-level Polygenic Priority

Score (PoPS).68 However, only 3 of the 52 genes (6%) prioritized

for COPD by DEPICT overlapped with a gene prioritized for

asthma using the same method (Table S16), and 17 of the 184

genes (9%) prioritized for COPD by PoPS overlapped with a

prioritized gene for asthma (Table S17). Across the shared

COPD and asthma genes prioritized by each method, only one

gene, MED24, was prioritized by more than one method, high-

lighting that existing gene prioritization methods have poor

agreement, an observation that has been previously discussed68

and is explored in more detail in Zhou et al.33

We also adopted MAGMA for gene set enrichment based on

the curated and ontology gene sets from the Molecular Signa-

tures Database (MSigDB).69 We found hundreds of gene sets

that were significantly enriched (false discovery rate [FDR]

<0.05) by the asthma-associated genes discovered in the EUR

and EAS meta-analyses (Table S18). In contrast, only a handful

of gene sets were significantly enriched among COPD-associ-

ated genes discovered in the AFRmeta-analysis, likely reflecting

the smaller overall sample size of the COPD meta-analysis

(Table S19). The top-ranked asthma pathways from the EUR

meta-analysis included cytokine and interleukin signaling and
T cell activation. Consistently biologically, the EAS meta-anal-

ysis identified autoimmune thyroid disease and graft-versus-

host disease pathways. The top-ranked COPD pathways from

the EUR meta-analysis, although not significant, included

several pathways related to nicotine receptor activity. These re-

sults reinforce the notion that despite the substantial genetic

overlap, asthma and COPD are governed by distinct biological

processes as well. Future investigations will be required to fully

parse out the etiology and comorbidities of asthma, like COPD,

that develop later on in adulthood.

Genetic overlap between asthma and other diseases
Non-genetic epidemiological studies have also identified corre-

lations between asthma and many other disease categories

beyond COPD.70–72 More recently, some genome-wide cross-

trait studies have found evidence for shared genetic architec-

tures between asthma and other allergic diseases,21,73 neuro-

psychiatric disorders,22 and obesity,20 suggesting that a

comprehensive characterization of the shared genetics among

asthma and other complex diseases and traits could provide in-

sights into the variable pathology of asthma.19 Together, these

findings motivated us to assess whether correlations across a

broad spectrum of disease endpoints are potentially driven by

a shared genetic basis or are purely observational and not driven

by a shared biology. Since the GBMI project was limited to 14

disease endpoints, we utilized the wide range of phenotypic

data available in UKBB tomeasure correlations between asthma

and additional diseases and traits. Applying LDSC to the UKBB

EUR GWAS of 1,008 significantly heritable (heritability Z score >

4) phenotypes and the GBMI leave-UKBB-out meta-analysis

of asthma, we obtained pairwise genetic correlation estimates

between these phenotypes and asthma. We observed

strong correlations (|rg| > 0.4) with 95 of these phenotypes,

which spanned prescriptions, PheCodes, and other categories

(Table S12). Digestive system disorders, including gastritis and

gastroesophageal reflux disease, emerged as a disease cate-

gory with significant and strong genetic correlations with

asthma. Although the association between asthma and digestive

disorders has not been as well studied, this does reinforce a pre-

vious finding of shared genetics between asthma and diseases

of the digestive system,9 indicating that the commonly observed

copresentation of asthma and gastroesophageal disease in the

clinic may be partially due to pleiotropic genetic effects. Our re-

sults also showed moderate and significant correlations (rg
ranging from 0.2 to 0.3) between asthma and neuropsychiatric

diseases, such as anxiety and depression, and obesity-related

traits, such as body mass index, which is similarly consistent

with previous findings.20,22

Leveraging data from another biobank, BBJ, we computed

genetic correlation estimates between the GBMI leave-BBJ-

out meta-analysis of asthma and 19 significantly heritable

disease endpoints in BBJ (Table S13). COPD showed the

strongest and most significant correlation with asthma (rg =

0.29, p = 6.413 10�6), but the notably lower estimate compared

with the estimate from the UKBB correlation analyses may be

due to differences in phenotype definition and curation. Polli-

nosis, also known as allergic rhinitis or hay fever, showed mod-

erate correlation with asthma (rg = 0.28, p = 0.0004), consistent
Cell Genomics 2, 100212, December 14, 2022 9
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with the correlation results from UKBB (rg = 0.39, p =

4.60 3 10�3). Comparing the phenotypes with significant SNP

heritability estimates in both BBJ and UKBB (Figure S11), we

found that only COPD had significant genetic correlations with

asthma across the biobanks. The rheumatoid arthritis (RA) and

type 2 diabetes (T2D) GWASs fromUKBB hadmoderate and sig-

nificant correlations with asthma, which were partially recapitu-

lated in the BBJ results that showed a moderate but not signifi-

cant correlation between the BBJ GWASs of RA and asthma,

and a small but significant correlation between the BBJ GWAS

of T2D and the GBMI leave-BBJ-out meta-analysis of asthma.

Several studies in the literature have reported a relationship

between risk for RA and asthma74–79 as well as T2D and

asthma,80–82 but more genetic studies in different populations

and biobanks are needed to investigate the potential shared ge-

netic architecture of these diseases. Importantly, causal relation-

ships between asthma and genetically correlated phenotypes

are not yet well understood, and other methods such as Mende-

lian randomization could be applied to identify potential causal

associations.83

DISCUSSION

Assembling a large and diverse collection of asthma cohorts

from around the world, we conducted a GWAS meta-analysis

of 18 biobanks as well as a replication meta-analysis of 4

additional biobanks, and identified 49 novel associations among

a total of 179. Despite the substantial sample sizes of previous

meta-analyses of asthma,9 our results indicated that the hetero-

geneity and complexity of asthma, like other common polygenic

diseases, will benefit from even larger sample sizes for genomic

discovery. We interrogated the overall consistency of genetic

effects across the cohorts and found that despite variability in

recruitment, continent, sampling strategy, health system design,

and disease prevalence, the effects of the loci discovered in the

meta-analysis were by and large concordant across the bio-

banks. Additionally, genetic correlation estimates across ances-

tries, which ranged from 0.65 to 0.99 for the well-powered

ancestry groups, strongly supported the finding that the genetic

architecture of asthma is largely shared across the ancestry

groups studied.

Importantly, however, the addition of GWASs from more

diverse populations aided the discovery of genetic loci with

higher frequencies in non-EUR populations that did not reach

genome-wide significance in the meta-analysis with only EUR

cohorts, highlighting the importance of diversifying genomic

studies of asthma. Given the current disproportionate represen-

tation of European ancestries, we expect that as the availability

of non-EUR GWASs of asthma and other asthma-related dis-

eases and traits continues to increase, it is likely that greater

numbers of such variants associated with asthma will be discov-

ered. Previous studies of asthma-related diseases, such as

atopic dermatitis, in non-EUR populations have similarly identi-

fied additional risk variants that are higher in frequency in other

populations but have also found highly shared polygenic

architecture between populations, mirroring our findings for

asthma.84,85 This study also provides further evidence for

substantial genetic overlap between childhood-onset and
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adult-onset asthma, as well as between asthma and well-known

immune-related comorbidities such as COPD and allergic dis-

eases. Additionally, we identified genetic correlations between

asthma and less well-studied comorbidities such as digestive

system disorders while highlighting additional complexity in the

etiology and comorbidities of asthma. For example, gene-set

enrichment analyses using MAGMA did not yield many shared

pathways for asthma and COPD despite the strong genetic

correlation.

We also demonstrated that the greater diversity of the GBMI

improved polygenic prediction in asthma, particularly for popula-

tions of non-European ancestry. Previous studies on asthma

PRS in the literature have primarily focused on using PRS to

predict asthma in pediatric cohorts, and overall found limited

performance of PRS.28–30,86 Most of these studies used the

P + T approach, while a recently published paper by Namjou

et al.32 applied PRS-CS to the TAGC multi-ancestry GWAS

and found improved discriminatory power of their PRS

(receiver-operating characteristic area under the curve [AUC]

of 0.66–0.70 across two pediatric cohorts) compared with the

prior studies that used P + T. Sordillo et al.31 applied another

genome-wide approach, lassosum, to the TAGC data, but their

PRS evaluated in adult cohorts showed moderate performance

(AUC of 0.51–0.57 across cohorts of different ancestries). While

we did not assess the lassosummethod, we have shown that the

greater sample size and diversity of the GBMI compared with

TAGC contribute to better-performing PRS (Figure 5). However,

we also found that differences in prediction power between the

Bayesian PRS construction methods PRS-CSx and PRS-CS

wereminimal. This may be due to imbalances in the sample sizes

of the discovery cohorts, whichmay need to be taken into careful

consideration when using these methods. Previous studies

have found that imbalanced sample sizes across ancestries

contribute somewhat unpredictably to varying prediction

performances, with a low signal-to-noise ratio in ancestry-

matched target populations reducing prediction performance.87

Therefore, further investigation is needed to fully understand the

interplay between sample size and ancestry in the context of

polygenic prediction. Ultimately, these analyses highlight the

pressing need for more well-powered and ancestrally diverse

resources that will help reduce these imbalances.

This study and, importantly, the data sharing across biobanks

facilitated by this initiative, have laid the groundwork for deeper

dives into the shared and distinct genetic signatures of asthma

subtypes. We were able to stratify two participating biobanks,

UKBB and FinnGen, into COA and AOA based on the partici-

pants’ ages at first diagnosis. While we found that the GBMI

asthma meta-analysis of all biobanks containing both subtypes

identified many of the loci contributing to these subtypes, the

age-of-onset-stratified meta-analyses uncovered additional sub-

type-specific loci. Of the top loci associated with COA and AOA,

11 and 12 loci, respectively, (1) did not overlap with a top locus in

the other subgroup meta-analysis and (2) were evaluated in the

all-asthma GBMI meta-analysis (i.e., in more than three GBMI

biobanks) but did not reach genome-wide significance in the

meta-analysis (Table S11). Because of the limited availability of

information on age at first diagnosis across the biobanks, we

were not able to explore age-dependent associations further,
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but with sufficient scale it is likely that more of the distinct genetic

architectures of COA and AOA will be uncovered.

Limitations of the study
There are several limitations of this study that should be taken into

consideration. We have highlighted the harmonization of the

phenotype definitions across biobanks, but it is important to

acknowledge that the criteria used, which allowed for both self-

reported and PheCode information, are vulnerable to imprecision

and variability in the data collected. Self-reported data for asthma

is particularly susceptible to imprecision because it relies on per-

sonal recollection of asthma diagnoses that are often given in

childhood. On the other hand, PheCodes, which are based on

ICD codes, may fail to capture diagnoses made earlier in the life-

time of individuals in hospital-based cohorts. Therefore, including

both self-reported and PheCode data—an approach adopted by

some but not all biobanks—may be optimal for association ana-

lyses for asthma. We were limited in our ability to evaluate the ef-

fects of phenotype definition on effect-size estimation, since only

three biobanks used self-reported data and two of these three

biobanks (TWB and BBJ) only have participants of EAS ancestry.

However, we compared the asthma GWAS derived from self-re-

ported versus PheCode data in UKBB and found high genetic

correlation (rg [SE] = 0.95 [0.01]) between the GWASs. This pro-

vides some evidence that variation in phenotype definition may

not significantly influence genetic discovery, but we cannot

confirm the same pattern for all biobanks in the GBMI and espe-

cially for other diseases. However, given the relative alignment of

genetic effects across the biobanks, we would expect that minor

differences in phenotype definition would not substantially

change the association results for asthma.

Additionally, we acknowledge that since the definitions used

here for asthma and COPD do not exclude individuals with con-

current diagnoses, we are not able to fully distinguish the distinct

biological pathways affecting asthma and COPD. Comorbidity

rates of asthma and COPD reported in the literature range across

studies but population-based estimates generally are low, around

2%–3%,88,89 while hospital-based prevalence estimates tend to

be higher, around 13%.90 Among biobanks participating in the

GBMI, for example, 15.5% of all individuals with asthma in

UKBB have a concurrent COPD diagnosis, 21% in BioVU, and

7.4% in BBJ. A previous study found that using stricter definitions

of asthma, such as excluding subjects with COPD, resulted in

stronger association signals for some of the asthma-associated

loci.7 However, it is important to note that if we excluded partic-

ipants with a COPD diagnosis, we would not have a fully repre-

sentative sample of the participants with asthma in the GBMI .

As has been documented in other studies,91,92 this could induce

selection bias or collider bias, which could lead to biased genetic

associations. Most of the previous genetic studies of asthma in

the literature did not exclude individuals with COPD from ana-

lyses. However, in the COA and AOA analyses, we did exclude

participants with a COPD diagnosis to avoid confounding from

potential misclassifications of AOA and COPD. We also note

that estimates of genetic correlation by LDSC are not biased by

sample overlap.59 In fact, this has been explored in the context

of asthma and allergic diseases, where rg estimates from LDSC

were shown to be robust to overlapping cases and/or controls.21
We also recognize the importance of analyzing environmental

factors in conjunction with genetic factors for a disease that is

heavily influenced by the environment. Our genetic analyses

offer insight into the potential shared biological pathways that

may be differentially affected by non-genetic factors, but we

were not able to explicitly investigate environmental effects

given the lack of available environmental exposure data among

the biobanks. The high degree of alignment among genetic asso-

ciations, coupled with the large variability in asthma prevalence,

points to a particularly important role of the environment for

asthma risk across populations. Gaining a greater understanding

of the specific non-genetic factors that contribute to asthma

development in different environments may help guide more

accurate disease prediction across populations.

Despite these limitations, examples from this study demon-

strate that with broader sharing of more extensive phenotype

data, biobanks are well positioned to not only facilitate general

locus discovery but also advance the study of disease subtypes

and comorbidities. The inclusion of individuals of diverse ances-

tries at a continuously increasing scale will accelerate novel

variant and gene discovery. This will more quickly expand the

set of genetic findings from which biological inference can be

drawn, as well as ensure that predictive models derived from ge-

netic risk factors will be as accurate and informative for individ-

uals of all ancestries and geographical locations as possible.
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Kristin Tsuo (ktsuo@

broadinstitute.org).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d The all-biobank meta-analysis results and plots for the 14 endpoints (including both ancestry-specific and cross-ancestry

meta-analyses) are available for downloading at https://www.globalbiobankmeta.org/resources and browsing at the browser

http://results.globalbiobankmeta.org. The PRS-CS weights estimated using the all-biobank multi-ancestry meta-analyses and

leave-UKBB-out multi-ancestrymeta-analyses have been depositedwithin the PGSCatalogwith study ID PGP000262 (https://

www.pgscatalog.org/).

d All original code has been deposited to Zenodo with DOIs as below and is publicly available as of the date of publication. Links

are listed in the key resources table.

d Scripts used for quality control, meta-analysis and summary of results are available at https://github.com/globalbiobankmeta

and deposited at https://zenodo.org/badge/latestdoi/295461030.

d Scripts for PC projection are deposited at https://zenodo.org/badge/latestdoi/353203447.

d Scripts for analysis of asthma meta-analysis results are available at https://github.com/ktsuo/globalbiobankmeta-Asthma and

deposited at https://doi.org/10.5281/zenodo.7130276.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
METHODS DETAILS

Asthma phenotype definitions
The phenotype definition guidelines that were developed by GBMI and shared with all participating biobanks can be found in Zhou

et al.33 Disease endpoints, including asthma, were defined following the PheCode maps, which maps ICD-9 or ICD-10 codes to

PheCodes.105 Asthma cases were all study participants with the asthma PheCode, and controls were all study participants without

the asthma PheCode (or asthma-related PheCodes). Biobanks that did not have ICD codes primarily used self-reported data

(Table S3).

Principal components (PC) projection
To compare the genetic ancestries represented in different biobanks, we used pre-computed loadings of genetic markers shared

across all biobanks and the reference data containing 1000 Genomes (1000G) and the Human Genome Diversity Project (HGDP)

to project biobank participants to the same principal components space. 179,195 genetic variants were genotyped/imputed in all

biobanks, among which 168,899 are also in the 1000 Genomes34 and HGDP.95 The weights corresponding to principal components

for those markers were estimated based on the PCA for the reference samples with known ancestry in 1000G and HGDP and shared

among biobanks. Biobanks then generated PC loadings based on the pre-estimated weights of those markers. More details are

described in Zhou et al.33

Meta-analysis
We performed fixed-effects meta-analysis with inverse variance weighting for 18 biobanks in GBMI: China Kadoorie Biobank (CKB),

Generation Scotland (GS), Lifelines, QSKIN, East London Genes & Health (GNH), HUNT, UCLA Precision Health Biobank (UCLA),

Colorado Center for Personalized Medicine (CCPM), Mass General Brigham (MGB), BioVU, BioMe, Michigan Genomics Initiative

(MGI), BioBank Japan (BBJ), Estonian Biobank (ESTBB), deCODE Genetics (DECODE), FinnGen, Taiwan Biobank (TWB), and UK

Biobank (UKBB). Basic information on the biobanks are described in Zhou et al.,33 as well as details on the genotyping, imputation,

GWAS, post-GWAS quality control, andmeta-analysis procedures.33 In brief, genetic variants with minor allele count (MAC) < 20 and

imputation score <0.3 were excluded from the analyses. Genetic variants with different allele frequencies (AF) compared to gno-

mAD93 (Mahalanobis distance between AF-GWAS and AF-gnomAD > 3 standard deviations away from the mean) were also

excluded. Altogether, these cohorts had a total sample size of 153,763 cases and 1,647,022 controls (Table S1). GWAS meta-ana-

lyses were first conducted within continental ancestry groups to control for population stratification. 5,051 cases and 27,607 controls

were of African (AFR) ancestry; 4,069 cases and 14,104 controls were of Admixed American (AMR) ancestry; 18,549 cases and

322,655 controls were of East Asian (EAS) ancestry; 121,940 cases and 1,254,131 were of European (EUR) ancestry; 139 cases

and 1,434 controls were of Middle Eastern (MID) ancestry; and 4,015 cases and 27,091 controls were of Central and South Asian

(CSA) ancestry.
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We also performed fixed-effects meta-analysis with inverse variance weighting for 4 additional biobanks that served as indepen-

dent replication studies: Canadian Partnership for Tomorrow’s Health (CanPath), Qatar Biobank (QBB), Biobank of the Americas

(BBofA), and PennMedicine Biobank (PMBB). Collectively, these cohorts had a total sample size of 9,991 cases and 63,605 controls

(Table S1). More information on these biobanks are also described in Zhou et al.33

Index variant and locus definitions
We used a threshold of p < 53 10�8 to identify SNPs with a genome-wide significant effect. To identify loci, we used a window size of

500 kb upstream and downstream of the SNPs with the strongest evidence of association in the meta-analysis, and merged over-

lapping regions until no genome-wide significant variants were detected within the ±500 kb region. To designate loci as previously

discovered or potentially novel, we compiled a list of known asthma-associated SNPs (p < 53 10�8) from the associations collected

by El-Husseini et al.6 and listed in theGWAS catalog (as of 11/14/2021).106We extended 500 kb upstream and downstream of each of

these variants to define a locus, and intersected these regions with the loci defined by the index variants in our meta-analysis to iden-

tify any overlaps. We annotated genetic variants with the nearest genes using ANNOVAR101 and putative loss-of-function using

VEP107 with the LOFTEE plug93 as implemented in Hail.33We also annotated whether the index or tagging variants (r2 > 0.8) of asthma

were fine-mapped in any of the cis-eQTL fine-mapping resources. We retrieved cis-eQTL fine-mapped variants with posterior inclu-

sion probability (PIP) > 0.9 in any tissues and cell types from the GTEx v899 and eQTL catalog release 4.108 Fine-mapping was

conducted using SuSiE109 with summary statistics and covariate-adjusted in-sample LDmatrix as described previously.110 Genome

positions are reported in build hg38 for index variants.

Index SNP effects across biobanks
To estimate the correlation of SNP effects for the 179 top loci between one specific biobank and the leave-that-biobank-out meta-

analysis, we used the method proposed by Qi et al.50 using GWAS summary statistics (Table S5). Specifically, the method directly

calculates SNP effect correlation as:

brb =
dcovð bbbiobank ; bbleave�biobankÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½dvarð bbbiobankÞ � dvarðebiobankÞ�½dvarð bbleave�biobankÞ � dvarðeleave�biobankÞ�
q

where bbbiobank and bbleave�biobank denote the estimated SNP effects from GWAS conducted in one specific biobank and from GWAS

performed in the leave-that-biobank-out meta-analysis, respectively. The dcovð bbbiobank ; bbleave�biobankÞ is calculated as the sampling

covariance between bbbiobank and bbleave�biobank . The dvarð bbbiobankÞ and dvarð bbleave�biobankÞ are the estimated variances of bbbiobank andbbleave�biobank , separately. The dvarðebiobankÞ and dvarðeleave�biobankÞ are the estimated variance of the estimation errors of bbbiobank

and bbleave�biobank , which are approximated as the mean of the squared standard errors of estimated SNP effect ( bbbiobank and

bbleave�biobank ) across all the top-associated SNPs, respectively. The standard error of rb is obtained through the jackknife approach

by leaving one SNP out each time. SNPswith large standard errors in CKB andHUNT (chr12:123241280:T:C and chr17:7878812:T:C,

respectively) were excluded from these analyses.

Then, for the index variants present in each biobank, we computed:

biobank meta � analysis effect size

leave � that � biobank � out meta � analysis effect size

for the biobank and leave-that-biobank-out pair. We took the average ratio across the index variants for each biobank and leave-that-

biobank-out pair. We then used the regression method introduced in Deming et al.,35 which considers the errors in both the X- and

Y-variables, to compare the effect sizes of these SNPs in each biobank GWAS with their effects in the leave-that-biobank-out meta-

analysis. We set the intercept equal to 0 for these analyses.

Ancestry-specific heterogeneity
To assess heterogeneity of per-SNP effect sizes for the 179 top loci across ancestries in the GBMI, we conducted ancestry-specific

meta-analyses of the five most well-powered ancestry groups in the GBMI (EUR, AFR, AMR, EAS, and CSA). We applied the Co-

chran’s Q test111 to the SNP effects in the ancestry-specific meta-analyses and identified SNPs with significant heterogeneity based

on a Bonferroni-corrected p value cut-off of 0.05/169 = 0.0003, accounting for the number of SNPs present in all studies (Table S7).

Regions displaying heterogeneity in effects across ancestry groups were visualized using the LocalZoom tool.103

Polygenic risk scores
A description of the PRS analyses conducted using PRS-CS,57 as well as the leave-one-biobank-out meta-analysis strategy applied,

is provided in Wang et al.56

We used PRS-CSx, which jointly models GWAS summary statistics from populations of different ancestries and returns posterior

SNP effect size estimates for each input population.58 We applied this method to the AMR, AFR, CSA, EAS, and EUR ancestry-spe-

cific meta-analyses, which served as the discovery data for PRS construction. For the ancestry-specific meta-analysis that matched
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the ancestry of the target cohort, we excluded the target cohort. We evaluated the predictive performance of the PRS in 4 target co-

horts: 1) AFR ancestry individuals in UKBB (849 cases, 5190 controls), 2) CSA ancestry individuals in UKBB (1232 cases, 6744 con-

trols), 3) EAS ancestry individuals in BBJ that were part of a randomly-selected 1k holdout set (500 cases, 500 controls), and 4) EUR

ancestry individuals in UKBB that were part of a randomly-selected holdout set (1164 cases, 7577 controls). We also evaluated the

PRS in an additional randomly-selected 1k holdout set (131 cases, 869 controls) of EURancestry individuals in UKBB. As an example,

for the AFR ancestry individuals, the full set of discovery data for PRS construction consisted of the AMR, CSA, EAS, and EUR

ancestry-specific meta-analyses, as well as the AFR ancestry-specific meta-analysis excluding the AFR ancestry individuals in

UKBB. The same strategy was applied to the other 3 target cohorts (Table S9). We used ancestry-matched LD reference panels

from UKBB data and the default PRS-CSx settings for all input parameters. We evenly and randomly split cases and controls in

the target cohorts into validation and testing subsets. Using the posterior SNP effect size estimates from PRS-CSx, we computed

one PRS per discovery population for the validation subsets to learn the optimal linear combination of the ancestry-specific PRS us-

ing PLINK v1.9.102,112 Then, with these weights, we evaluated the prediction accuracy of this linear combination of PRS in the testing

subset. We reported the average prediction accuracy, measured by variance explained on the liability scale (R2
liability ), estimated using

the prevalence of asthma in the BBJ biobank for the EAS target cohort and in the UKBB biobank for the other target cohorts, across

100 random splits.

Age-of-onset subtype GWAS and meta-analyses
UKBB

We first identified EUR individuals in UKBBwith an asthma diagnosis based on information from the asthma PheCode or field 20002,

which has self-reported diagnoses from verbal interviews. We then excluded individuals with either (1) a COPD diagnosis based on

the COPD PheCode or field 20002, (2) missing information for field 3786, which has age at first asthma diagnosis information, (3) an

asthma diagnosis after age 60 based on field 3786, or (4) greater than 10 years between the age reported in field 3786 and the age

reported in field 22147, another age at first asthma diagnosis field that only a subset of participants filled out as part of a follow-up

questionnaire. Then, using the age at first diagnosis reported in field 3786, we divided these individuals into asthma age of onset

groups: those with diagnoses at or before age 19 were childhood-onset (n = 12,577) and after age 19 were adult-onset (n =

23,533). We then conducted separate COA and AOA GWAS using Scalable and Accurate Implementation of GEneralized mixed

model (SAIGE).100 The same set of controls was used (n = 359,116) for both GWAS, derived based on the PheCode guidelines pro-

vided by the GBMI.33

FinnGen

We identified individuals with an asthma diagnosis based on the PheCode guidelines provided by the GBMI33 (Table S3). We

excluded individuals with either (1) a COPD diagnosis based on the COPD PheCode definition, or (2) an asthma diagnosis after

age 60. Those with diagnoses at or before age 19 were childhood-onset (n = 8,387) and after age 19 were adult-onset (n =

33,191). We conducted separate COA and AOA GWAS using SAIGE.100 The same set of controls was used (n = 314,898) for both

GWAS, derived based on the PheCode guidelines provided by the GBMI.33

Meta-analyses

We performed fixed-effects meta-analysis with inverse variance weighting for the COAGWAS from UKBB and FinnGen and the AOA

GWAS from both biobanks. We used linkage-disequilibrium score correlation (LDSC)59 to compute pairwise genetic correlations (rg)

between (1) the subtypemeta-analyses, (2) each subtypemeta-analysis and the GBMI COPDmeta-analysis, (3) each subtypeGWAS

from UKBB and the GBMI all-asthma leave-UKBB-out meta-analysis, and (4) each subtype GWAS from FinnGen and the GBMI all-

asthma leave-FinnGen-outmeta-analysis. Finally, using the regressionmethod introduced in Deming et al.,35 we compared the effect

sizes of the 179 index variants discovered in the GBMI all-asthmameta-analysis in each subtype meta-analysis. We set the intercept

equal to 0 for this analysis.

Genetic correlation in UKBB and BBJ
Using LDSC, we estimated rg between all EUR-ancestry UKBB phenotypes with heritability Z score > 4 and (1) the GBMI leave-

UKBB-out meta-analysis for asthma and (2) the UKBB EUR-ancestry GWAS of asthma (PheCode ID 495 in UKBB) (Table S12).

The heritability Z-scores were obtained from the stratified-LDSC (S-LDSC) computations of heritability reported by the Pan-UK Bio-

bank team.96,113,114 Summary statistics from the UKBB EUR GWAS were obtained from the Pan-UK Biobank team as well.96

We also used LDSC59 to compute rg between 48 phenotypes in BioBank Japan (BBJ) and (1) the GBMI leave-BBJ-out meta-anal-

ysis for asthma and (2) the BBJ GWAS of asthma (Table S13). We used publicly available GWAS summary statistics for all traits.97–99

Genetic correlation results were visualized using the R corrplot package.104

Gene- and pathway-based enrichment
Fixed-effects meta-analysis with inverse variance weighting was performed for 16 biobanks in the GBMI with COPD data: BBJ,

BioMe, BioVU, CCPM, CKB, ESTBB, FinnGen, GNH, GS, HUNT, Lifelines, MGB,MGI, TWB, UCLA, and UKBB. The same processing

and methods were applied here as for the asthma meta-analysis. These cohorts had a total sample size of 81,568 cases and

1,310,798 controls. COPD cases were defined based on the COPD PheCode, and controls were all study participants without the

COPD or COPD-related PheCodes. Biobanks that did not have ICD codes available used spirometry data (Lifelines) or self-reported
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data (TWB). Details can be found in Zhou et al.33 Meta-analyses were also conducted within continental ancestry groups: 19,044

cases and 310,689 controls of EAS ancestry, 1,978 cases and 27,704 controls of AFR ancestry, and 58,559 cases and 937,358 con-

trols of EUR ancestry.

MAGMA

We usedMulti-marker Analysis of GenoMic Annotation (MAGMA)66 v1.09b for gene and gene-set enrichment analyses, applying this

method to the GBMI asthma EUR, AFR, EAS, and CSA ancestry-specific meta-analyses (Table S14) and the GBMI COPD EUR, AFR,

and EAS ancestry-specific meta-analyses (Table S15). For the gene-level analyses in MAGMA, we first mapped the SNPs to the pro-

vided list of genes using a window size of 20kb, and then performed gene analysis using the ancestry-matched 1000G LD reference

panels to account for LD structure. Gene-set enrichment was performed using the default settings to correct for gene length, gene

density, and the inversemeanminor allele count. The gene sets usedwere the c2, ‘‘curated gene sets,’’ and c5, ‘‘ontology gene sets,’’

obtained from the Molecular Signatures Database v7.469 (Tables S18 and S19).

DEPICT

We also used Data-driven Expression-Prioritized Integration for Complex Traits (DEPICT),67 which performs gene prioritization based

on correlation of genes across gene sets. We used a 1000G LD reference panel from individuals of EUR ancestry to calculate LD and

identify tag SNPs from GWAS results. We report results from the gene prioritization using a p value threshold of 53 10�8 and a min-

imum of 10 index variants. We defined significant enrichment results by FDR <0.05 (Table S16). Full details can be found in Zhou

et al.33

PoPS

We used another gene prioritization method, Polygenic Priority Score (PoPS), to identify potential causal genes.68 PoPS performs

gene prioritization based on the integration of GWAS data with gene expression, biological pathway, and predicted protein-protein

interaction data. We similarly used a 1000G LD reference panel from individuals of EUR ancestry to obtain gene-level associations.

Next, MAGMA was applied to integrate the gene-level associations and gene-gene correlations to perform enrichment analysis for

gene features selection. Finally, we computed a PoPS score by fitting a joint model with all the selected features simultaneously. We

considered genes with a PoPS score in the top one percentile as the prioritized genes (Table S17). Full details can be found in Zhou

et al.33

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analysis was performed using R 4.0.5 and Hail 0.2.98. All methodological details can be found in the STAR Methods

section, and all statistical tests are named as they are used.
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