1,232 research outputs found

    EFFECTS OF LAND COVER, WATER REDISTRIBUTION, AND TEMPERATURE ON ECOSYSTEM PROCESSES IN THE SOUTH PLATTE BASIN

    Get PDF
    Over one‐third of the land area in the South Platte Basin of Colorado, Nebraska, and Wyoming, has been converted to croplands. Irrigated cropland now comprises 8% of the basin, while dry croplands make up 31%. We used the RHESSys model to compare the changes in plant productivity and vegetation‐related hydrological processes that occurred as a result of either land cover alteration or directional temperature changes (−2°C, +4°C). Land cover change exerted more control over annual plant productivity and water fluxes for converted grasslands, while the effect of temperature changes on productivity and water fluxes was stronger in the mountain vegetation. Throughout the basin, land cover change increased the annual loss of water to the atmosphere by 114 mm via evaporation and transpiration, an increase of 37%. Both irrigated and nonirrigated grains became active earlier in the year than shortgrass steppe, leading to a seasonal shift in water losses to the atmosphere. Basin‐wide photosynthesis increased by 80% due to grain production. In contrast, a 4°C warming scenario caused annual transpiration to increase by only 3% and annual evaporation to increase by 28%, for a total increase of 71 mm. Warming decreased basin‐wide photosynthesis by 16%. There is a large elevational range from east to west in the South Platte Basin, which encompasses the western edge of the Great Plains and the eastern front of the Rocky Mountains. This elevational gain is accompanied by great changes in topographic complexity, vegetation type, and climate. Shortgrass steppe and crops found at elevations between 850 and 1800 m give way to coniferous forests and tundra between 1800 and 4000 m. Climate is increasingly dominated by winter snow precipitation with increasing elevation, and the timing of snowmelt influences tundra and forest ecosystem productivity, soil moisture, and downstream discharge. Mean annual precipitation of \u3c500 mm on the plains below 1800 m is far less than potential evapotranspiration of 1000–1500 mm and is insufficient for optimum plant productivity. The changes in water flux and photosynthesis from conversion of steppe to cropland are the result of redistribution of snowmelt water from the mountains and groundwater pumping through irrigation projects

    Thermal Bogoliubov transformation in nuclear structure theory

    Full text link
    Thermal Bogoliubov transformation is an essential ingredient of the thermo field dynamics -- the real time formalism in quantum field and many-body theories at finite temperatures developed by H. Umezawa and coworkers. The approach to study properties of hot nuclei which is based on the extension of the well-known Quasiparticle-Phonon Model to finite temperatures employing the TFD formalism is presented. A distinctive feature of the QPM-TFD combination is a possibility to go beyond the standard approximations like the thermal Hartree-Fock or the thermal RPA ones.Comment: 8 pages, Proceedings of the International Bogolyubov Conference "Problems of Theoretical and Mathematical Physics", August 23 -- 27, 2009, Dubna, Russi

    Ghost Condensates and Dynamical Breaking of SL(2,R) in Yang-Mills in the Maximal Abelian Gauge

    Full text link
    Ghost condensates of dimension two in SU(N) Yang-Mills theory quantized in the Maximal Abelian Gauge are discussed. These condensates turn out to be related to the dynamical breaking of the SL(2,R) symmetry present in this gaugeComment: 16 pages, LaTeX2e, final version to appear in J. Phys.

    Chapter 18. DAYCENT Simulated Effects of Land Use and Climate on County Level N Loss Vectors in the USA

    Get PDF
    We describe the nitrogen (N) gas (NH3, NOx, N2O, N2) emission and NO3 leaching submodels used in the DAYCENT ecosystem model and demonstrate the ability of DAYCENT to simulate observed N2O emission and NO3 leaching rates for various sites representing different climate regimes, soil types, and land uses. DAYCENT simulated seven major crops, grazing lands, and potential native vegetation at the county level for the United States. At the national scale, NO3 leaching was the major loss vector, accounting for 86%, 66%, and 56% of total N losses for cropped soils, grazed lands, and native vegetation, respectively. NH3 volatilization + NOx emissions made up the majority of national N gas losses, accounting for 58%, 89%, and 86% of N gas losses from cropped soils, grazed lands, and native vegetation, respectively. However, there was considerable spatial variability in the N loss vectors, with leaching accounting for less than 20% of total N losses and NOx + NH3 emissions accounting for less than 50% of N gas losses in some counties. Land use area weighted mean annual N losses were 43.9 (SD = 26.8) and 12.3 (SD = 22.2)kg N/ha for cropped/grazed and native systems, respectively. Area weighted mean annual N gas losses were 11.8 (SD = 4.8) and 5.4 (SD = 2.1)kg N/ha for cropped/grazed and native systems, respectively. Total N losses and NO3 leaching tended to increase as N inputs and precipitation increased, and as soils became coarser textured. Total N gas losses also increased with N inputs and as soils became coarser textured, but N2O and N2 made up a larger portion of N gas losses as soils became finer textured and as precipitation increased

    Climate Change Impacts on Freshwater Wetland Hydrology and Vegetation Cover Cycling Along a Regional Aridity Gradient

    Get PDF
    Global mean temperature may increase up to 6°C by the end of this century and together with precipitation change may steepen regional aridity gradients. The hydrology, productivity, and ecosystem services from freshwater wetlands depend on their future water balance. We simulated the hydrology and vegetation dynamics of wetland complexes in the North American Prairie Pothole Region with the WETLANDSCAPE model. Simulations for 63 precipitation × temperature combinations spanning 6°C warming and −20% to +20% annual precipitation change at 19 locations along a mid-continental aridity gradient showed that aridity explained up to 99% of the variation in wetland stage and hydroperiod for all wetland permanence types, and in vegetation cycling for semipermanent wetlands. The magnitude and direction of hydrologic responses depended on whether climate changes increased or decreased water deficits. Warming to 6°C and 20% less precipitation increased wetland water deficits and more strongly decreased wetland stage and hydroperiod from historic levels at low aridity, especially in semipermanent wetlands, where peak vegetation cycling (Cover Cycle Index, CCI) also shifted to lower aridity. In contrast, 20% more precipitation decreased water deficits, increasing wetland stage and hydroperiod most strongly in shallow wetlands at high aridity, but filling semipermanent wetlands and reducing CCI at low aridity. All climate changes narrowed the range of aridity favorable to high productivity. Climate changes that reduce water deficits may help maintain wetlands at high aridity at the expense of those at low aridity, but with warming certain, increased deficits are more likely and will help maintain wetlands at lower aridity but exacerbate loss of wetlands at high aridity. Thus, there is likely not a universally applicable approach to mitigating climate change impacts on freshwater wetlands across regional aridity gradients. Conservation strategies need to account for aridity-specific effects of climate change on freshwater wetland ecosystems

    Quantum phase space distributions in thermofield dynamics

    Full text link
    It is shown that the the quantum phase space distributions corresponding to a density operator ρ\rho can be expressed, in thermofield dynamics, as overlaps between the state âˆŁÏ>\mid \rho > and "thermal" coherent states. The usefulness of this approach is brought out in the context of a master equation describing a nonlinear oscillator for which exact expressions for the quantum phase distributions for an arbitrary initial condition are derived.Comment: 17 pages, revtex, no figures. number of pages were incorrectly stated as 3 instead of 17. No other correction

    A note on the Landauer principle in quantum statistical mechanics

    Full text link
    The Landauer principle asserts that the energy cost of erasure of one bit of information by the action of a thermal reservoir in equilibrium at temperature T is never less than kTlog2kTlog 2. We discuss Landauer's principle for quantum statistical models describing a finite level quantum system S coupled to an infinitely extended thermal reservoir R. Using Araki's perturbation theory of KMS states and the Avron-Elgart adiabatic theorem we prove, under a natural ergodicity assumption on the joint system S+R, that Landauer's bound saturates for adiabatically switched interactions. The recent work of Reeb and Wolf on the subject is discussed and compared

    THERMAL EFFECTS ON THE CATALYSIS BY A MAGNETIC FIELD

    Get PDF
    We show that the formation of condensates in the presence of a constant magnetic field in 2+1 dimensions is extremely unstable. It disappears as soon as a heat bath is introduced with or without a chemical potential. We point out some new nonanalytic behavior that develops in this system at finite temperature.Comment: 10 pages, plain Te
    • 

    corecore