761 research outputs found

    Multiscale biomimetic topography for the alignment of neonatal and embryonic stem cell-derived heart cells

    Get PDF
    Nano- and microscale topographical cues play critical roles in the induction and maintenance of various cellular functions, including morphology, adhesion, gene regulation, and communication. Recent studies indicate that structure and function at the heart tissue level is exquisitely sensitive to mechanical cues at the nano-scale as well as at the microscale level. Although fabrication methods exist for generating topographical features for cell culture, current techniques, especially those with nanoscale resolution, are typically complex, prohibitively expensive, and not accessible to most biology laboratories. Here, we present a tunable culture platform comprised of biomimetic wrinkles that simulate the heart's complex anisotropic and multiscale architecture for facile and robust cardiac cell alignment. We demonstrate the cellular and subcellular alignment of both neonatal mouse cardiomyocytes as well as those derived from human embryonic stem cells. By mimicking the fibrillar network of the extracellular matrix, this system enables monitoring of protein localization in real time and therefore the high-resolution study of phenotypic and physiologic responses to in-vivo like topographical cues.published_or_final_versio

    Multiscale biomimetic topography for the alignment of neonatal and embryonic stem cell-derived heart cells

    Get PDF
    Nano- and microscale topographical cues play critical roles in the induction and maintenance of various cellular functions, including morphology, adhesion, gene regulation, and communication. Recent studies indicate that structure and function at the heart tissue level is exquisitely sensitive to mechanical cues at the nano-scale as well as at the microscale level. Although fabrication methods exist for generating topographical features for cell culture, current techniques, especially those with nanoscale resolution, are typically complex, prohibitively expensive, and not accessible to most biology laboratories. Here, we present a tunable culture platform comprised of biomimetic wrinkles that simulate the heart's complex anisotropic and multiscale architecture for facile and robust cardiac cell alignment. We demonstrate the cellular and subcellular alignment of both neonatal mouse cardiomyocytes as well as those derived from human embryonic stem cells. By mimicking the fibrillar network of the extracellular matrix, this system enables monitoring of protein localization in real time and therefore the high-resolution study of phenotypic and physiologic responses to in-vivo like topographical cues.published_or_final_versio

    Accretion of Planetary Material onto Host Stars

    Full text link
    Accretion of planetary material onto host stars may occur throughout a star's life. Especially prone to accretion, extrasolar planets in short-period orbits, while relatively rare, constitute a significant fraction of the known population, and these planets are subject to dynamical and atmospheric influences that can drive significant mass loss. Theoretical models frame expectations regarding the rates and extent of this planetary accretion. For instance, tidal interactions between planets and stars may drive complete orbital decay during the main sequence. Many planets that survive their stars' main sequence lifetime will still be engulfed when the host stars become red giant stars. There is some observational evidence supporting these predictions, such as a dearth of close-in planets around fast stellar rotators, which is consistent with tidal spin-up and planet accretion. There remains no clear chemical evidence for pollution of the atmospheres of main sequence or red giant stars by planetary materials, but a wealth of evidence points to active accretion by white dwarfs. In this article, we review the current understanding of accretion of planetary material, from the pre- to the post-main sequence and beyond. The review begins with the astrophysical framework for that process and then considers accretion during various phases of a host star's life, during which the details of accretion vary, and the observational evidence for accretion during these phases.Comment: 18 pages, 5 figures (with some redacted), invited revie

    The middle ear of the pink fairy armadillo Chlamyphorus truncatus (Xenarthra, Cingulata, Chlamyphoridae): comparison with armadillo relatives using computed tomography.

    Get PDF
    The pink fairy armadillo Chlamyphorus truncatus is the smallest extant armadillo and one of the least-known fossorial mammals. The aim of this study was to establish if its middle ear is specially adapted to the subterranean environment, through comparison with more epigeic relatives of the groups Euphractinae (Chaetophractus villosus, Chaetophractus vellerosus, Zaedyus pichiy) and Dasypodinae (Dasypus hybridus). We examined the middle ears using micro-computed tomography and subsequent three-dimensional reconstructions. D. hybridus has a relatively small middle ear cavity, an incomplete bulla and 'ancestral' ossicular morphology. The other species, including Chlamyphorus, have fully ossified bullae and middle ear ossicles, with a morphology between 'transitional' and 'freely mobile', but in all armadillos the malleus retains a long anterior process. Unusual features of armadillo ears include the lack of a pedicellate lenticular apophysis and the presence, in some species, of an element of Paaw within the stapedius muscle. In common with many subterranean mammals, Chlamyphorus has a relatively flattened malleo-incudal articulation and appears to lack a functional tensor tympani muscle. Its middle ear cavity is not unusually enlarged, and its middle ear ossicles seem less robust than those of the other armadillos studied. In comparison with the euphractines, there is no reason to believe that the middle ear of this species is specially adapted to the subterranean environment; some aspects may even be indicative of degeneration. The screaming hairy armadillo, Chaetophractus vellerosus, has the most voluminous middle ear in both relative and absolute terms. Its hypertrophied middle ear cavity likely represents an adaptation to low-frequency hearing in arid rather than subterranean conditions.Argentinian research grants: Secretaría General de Ciencia y Tecnología, UNS (Project PGI 24/B243); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) through a PhD fellowship to APB; Subsecretaría de Relaciones Internacionales, UNS, through a grant to APB

    The Rossiter-McLaughlin effect in Exoplanet Research

    Full text link
    The Rossiter-McLaughlin effect occurs during a planet's transit. It provides the main means of measuring the sky-projected spin-orbit angle between a planet's orbital plane, and its host star's equatorial plane. Observing the Rossiter-McLaughlin effect is now a near routine procedure. It is an important element in the orbital characterisation of transiting exoplanets. Measurements of the spin-orbit angle have revealed a surprising diversity, far from the placid, Kantian and Laplacian ideals, whereby planets form, and remain, on orbital planes coincident with their star's equator. This chapter will review a short history of the Rossiter-McLaughlin effect, how it is modelled, and will summarise the current state of the field before describing other uses for a spectroscopic transit, and alternative methods of measuring the spin-orbit angle.Comment: Review to appear as a chapter in the "Handbook of Exoplanets", ed. H. Deeg & J.A. Belmont

    Radio emission from Supernova Remnants

    Get PDF
    The explosion of a supernova releases almost instantaneously about 10^51 ergs of mechanic energy, changing irreversibly the physical and chemical properties of large regions in the galaxies. The stellar ejecta, the nebula resulting from the powerful shock waves, and sometimes a compact stellar remnant, constitute a supernova remnant (SNR). They can radiate their energy across the whole electromagnetic spectrum, but the great majority are radio sources. Almost 70 years after the first detection of radio emission coming from a SNR, great progress has been achieved in the comprehension of their physical characteristics and evolution. We review the present knowledge of different aspects of radio remnants, focusing on sources of the Milky Way and the Magellanic Clouds, where the SNRs can be spatially resolved. We present a brief overview of theoretical background, analyze morphology and polarization properties, and review and critical discuss different methods applied to determine the radio spectrum and distances. The consequences of the interaction between the SNR shocks and the surrounding medium are examined, including the question of whether SNRs can trigger the formation of new stars. Cases of multispectral comparison are presented. A section is devoted to reviewing recent results of radio SNRs in the Magellanic Clouds, with particular emphasis on the radio properties of SN 1987A, an ideal laboratory to investigate dynamical evolution of an SNR in near real time. The review concludes with a summary of issues on radio SNRs that deserve further study, and analyzing the prospects for future research with the latest generation radio telescopes.Comment: Revised version. 48 pages, 15 figure

    Polymorphism of the FABP2 gene: a population frequency analysis and an association study with cardiovascular risk markers in Argentina

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The FABP2 gene encodes for the intestinal FABP (IFABP) protein, which is expressed only in intestinal enterocytes. A polymorphism at codon 54 in exon 2 of the FABP2 gene exchanges an Alanine (Ala), in the small helical region of the protein, for Threonine (Thr). Given the potential physiological role of the Ala54Thr FABP2 polymorphism, we assess in this study the local population frequency and analyze possible associations with five selected markers, i.e. glycemia, total cholesterol, body mass index (BMI), hypertension, and high Cardiovascular Risk Index (CVR index).</p> <p>Methods</p> <p>We studied 86 men and 116 women. DNA was extracted from a blood drop for genotype analysis. Allele frequencies were calculated by direct counting. Hardy Weinberg Equilibrium was evaluated using a Chi-square goodness of fit test.</p> <p>For the polymorphism association analysis, five markers were selected, i.e. blood pressure, Framingham Risk Index, total cholesterol, BMI, and glycemia.</p> <p>For each marker, the Odds Ratio (OR) was calculated by an online statistic tool.</p> <p>Results</p> <p>Our results reveal a similar population polymorphism frequency as in previous European studies, with <b>q = 0.277 </b>(95% confidence limits 0.234–0.323). No significant association was found with any of the tested markers in the context of our Argentine nutritional and cultural habits. We did, however, observe a tendency for increased Cholesterol and high BMI in Thr54 carriers.</p> <p>Conclusion</p> <p>This is the first study to look at the population frequency of the Thr54 allele in Argentina. The obtained result does not differ from previously reported frequencies in European populations. Moreover, we found no association between the Thr54 allele and any of the five selected markers. The observed tendency to increased total cholesterol and elevated BMI in Thr54 carriers, even though not significant for p < 0.1 could be worth of further investigation to establish whether the Thr54 variant should be taken into consideration in cardiovascular prevention strategies.</p

    A Qualitative View of Drug Use Behaviors of Mexican Male Injection Drug Users Deported from the United States

    Get PDF
    Deportees are a hidden yet highly vulnerable and numerous population. Significantly, little data exists about the substance use and deportation experiences of Mexicans deported from the United States. This pilot qualitative study describes illicit drug use behaviors among 24 Mexico-born male injection drug users (IDUs), ≥18 years old, residing in Tijuana, Mexico who self-identified as deportees from the United States. In-person interviews were conducted in Tijuana, Mexico in 2008. Content analysis of interview transcripts identified major themes in participants’ experiences. Few participants had personal or family exposures to illicit drugs prior to their first U.S. migration. Participants reported numerous deportations. Social (i.e., friends/family, post-migration stressors) and environmental factors (e.g., drug availability) were perceived to contribute to substance use initiation in the U.S. Drugs consumed in the United States included marijuana, heroin, cocaine, methamphetamine, and crack. More than half of men were IDUs prior to deportation. Addiction and justice system experiences reportedly contributed to deportation. After deportation, several men injected new drugs, primarily heroin or methamphetamine, or a combination of both drugs. Many men perceived an increase in their substance use after deportation and reported shame and loss of familial social and economic support. Early intervention is needed to stem illicit drug use in Mexican migrant youths. Binational cooperation around migrant health issues is warranted. Migrant-oriented programs may expand components that address mental health and drug use behaviors in an effort to reduce transmission of blood-borne infections. Special considerations are merited for substance users in correctional systems in the United States and Mexico, as well as substance users in United States immigration detention centers. The health status and health behaviors of deportees are likely to impact receiving Mexican communities. Programs that address health, social, and economic issues may aid deportees in resettling in Mexico

    The Role of the Yap5 Transcription Factor in Remodeling Gene Expression in Response to Fe Bioavailability

    Get PDF
    The budding yeast Saccharomyces cerevisiae has developed several mechanisms to avoid either the drastic consequences of iron deprivation or the toxic effects of iron excess. In this work, we analysed the global gene expression changes occurring in yeast cells undergoing iron overload. Several genes directly or indirectly involved in iron homeostasis showed altered expression and the relevance of these changes are discussed. Microarray analyses were also performed to identify new targets of the iron responsive factor Yap5. Besides the iron vacuolar transporter CCC1, Yap5 also controls the expression of glutaredoxin GRX4, previously known to be involved in the regulation of Aft1 nuclear localization. Consistently, we show that in the absence of Yap5 Aft1 nuclear exclusion is slightly impaired. These studies provide further evidence that cells control iron homeostasis by using multiple pathways
    corecore