800 research outputs found
Superconductivity in higher titanium oxides
Recent renewal of the highest transition temperature in a conventional
superconductor of the sulfer hydride attracts much attention to exploring
simple compounds with the lighter elements, situated in unconventional
conditions. We report the discovery of superconductivity in simple oxides of
Ti4O7 and g-Ti3O5 in a thin-film form having deliberately tuned epitaxial
structures and off-stoichiometry. These higher titanium oxides join in a class
of simple-oxide superconductors, and g-Ti3O5 now holds the highest
superconducting transition temperature of 7.1 kelvin among them. The mechanism
behind the superconductivity is discussed on the basis of electrical
measurements and theoretical predictions. We conclude that superconductivity
arises from unstabilized bipolaronic insulating states.Comment: 25 pages, 4 figures in main text, 14 pages, 11 figures in
supplemental informatio
Monte-Carlo simulation of localization dynamics of excitons in ZnO and CdZnO quantum well structures
Localization dynamics of excitons was studied for ZnO/MgZnO and CdZnO/MgZnO
quantum wells (QW). The experimental photoluminescence (PL) and absorption data
were compared with the results of Monte Carlo simulation in which the excitonic
hopping was modeled. The temperature-dependent PL linewidth and Stokes shift
were found to be in a qualitatively reasonable agreement with the hopping
model, with accounting for an additional inhomogeneous broadening for the case
of linewidth. The density of localized states used in the simulation for the
CdZnO QW was consistent with the absorption spectrum taken at 5 K.Comment: 4 figures, to appear in J. Appl. Phy
Polarization properties of laser-diode-pumped micro-grained Nd:YAG ceramic lasers
Detailed polarization properties have been examined in laser-diode-pumped
(LD-pumped) micro-grained ceramic Nd:YAG lasers in different microchip cavity
configurations. Stable linearly-polarized single-frequency oscillations, whose
polarization direction coincide with that of an LD pump light, were observed in
an external cavity scheme. While, in the case of a thin-slice laser scheme with
coated reflective ends, elliptically-polarized single-frequency operations took
place in the low pump-power regime and dynamic instabilities appeared,
featuring self-induced antiphase modulations among counter-rotating
circularly-polarized components having slightly different lasing frequencies,
with increasing the pump power.Comment: 9 pages, 5 figure
Experience in Use of Multi-Labeled Autoradiography by Means of 18F-Fluorodeoxyglucose and 14C-Iodoantipyrine
開始ページ、終了ページ: 冊子体のページ付
Estimation of Drug-effect in Use of Multi-tracer Autoradioqraphy - Effect of S-Adenosyl-L-Methionoie on Postischemic Brain Injury in Rat -
開始ページ、終了ページ: 冊子体のページ付
Photoemission study of TiO2/VO2 interfaces
We have measured photoemission spectra of two kinds of TiO-capped VO
thin films, namely, that with rutile-type TiO (r-TiO/VO) and that
with amorphous TiO (a-TiO/VO) capping layers. Below the
Metal-insulator transition temperature of the VO thin films, K,
metallic states were not observed for the interfaces with TiO, in contrast
with the interfaces between the band insulator SrTiO and the Mott insulator
LaTiO in spite of the fact that both TiO and SrTiO are band
insulators with electronic configurations and both VO and LaTiO
are Mott insulators with electronic configurations. We discuss possible
origins of this difference and suggest the importance of the polarity
discontinuity of the interfaces. Stronger incoherent part was observed in
r-TiO/VO than in a-TiO/VO, suggesting Ti-V atomic diffusion due
to the higher deposition temperature for r-TiO/VO.Comment: 5 pages, 6 figure
Two-dimensional superconductivity at a Mott-Insulator/Band-Insulator interface: LaTiO3/SrTiO3
Transition metal oxides display a great variety of quantum electronic
behaviours where correlations often play an important role. The achievement of
high quality epitaxial interfaces involving such materials gives a unique
opportunity to engineer artificial structures where new electronic orders take
place. One of the most striking result in this area is the recent observation
of a two-dimensional electron gas at the interface between a strongly
correlated Mott insulator LaTiO3 and a band insulator SrTiO3. The mechanism
responsible for such a behaviour is still under debate. In particular, the
influence of the nature of the insulator has to be clarified. Here we show that
despite the expected electronic correlations, LaTiO3/SrTiO3 heterostructures
undergo a superconducting transition at a critical temperature Tc=300 mK. We
have found that the superconducting electron gas is confined over a typical
thickness of 12 nm. We discuss the electronic properties of this system and
review the possible scenarios
- …