166 research outputs found

    Turbulent Stresses in Local Simulations of Radiation-Dominated Accretion Disks, and the Possibility of the LIghtman-Eardley Instability

    Full text link
    We present the results of a series of radiation-MHD simulations of a local patch of an accretion disk, with fixed vertical gravity profile but with different surface mass densities and a broad range of radiation to gas pressure ratios. Each simulation achieves a thermal equilibrium that lasts for many cooling times. After averaging over times long compared to a cooling time, we find that the vertically integrated stress is approximately proportional to the vertically-averaged total thermal (gas plus radiation) pressure. We map out--for the first time on the basis of explicit physics--the thermal equilibrium relation between stress and surface density: the stress decreases (increases) with increasing surface mass density when the simulation is radiation (gas) pressure dominated. The dependence of stress on surface mass density in the radiation pressure dominated regime suggests the possibility of a Lightman-Eardley inflow instability, but global simulations or shearing box simulations with much wider radial boxes will be necessary to confirm this and determine its nonlinear behavior.Comment: accepted for publication in The Astrophysical Journa

    Does the Slim-Disk Model Correctly Consider Photon-Trapping Effects?

    Get PDF
    We investigate the photon-trapping effects in the super-critical black hole accretion flows by solving radiation transfer as well as the energy equations of radiation and gas. It is found that the slim-disk model generally overestimates the luminosity of the disk at around the Eddington luminosity (L_E) and is not accurate in describing the effective temperature profile, since it neglects time delay between energy generation at deeper inside the disk and energy release at the surface. Especially, the photon-trapping effects are appreciable even below L ~ L_E, while they appear above ~ 3L_E according to the slim disk. Through the photon-trapping effects, the luminosity is reduced and the effective temperature profile becomes flatter than r^{-3/4} as in the standard disk. In the case that the viscous heating is effective only around the equatorial plane, the luminosity is kept around the Eddington luminosity even at very large mass accretion rate, Mdot>>L_E/c^2. The effective temperature profile is almost flat, and the maximum temperature decreases in accordance with rise in the mass accretion rate. Thus, the most luminous radius shifts to the outer region when Mdot/(L_E/c^2) >> 10^2. In the case that the energy is dissipated equally at any heights, the resultant luminosity is somewhat larger than in the former case, but the energy-conversion efficiency still decreases with increase of the mass accretion rate, as well. The most luminous radius stays around the inner edge of the disk in the latter case. Hence, the effective temperature profile is sensitive to the vertical distribution of energy production rates, so is the spectral shape. Future observations of high L/L_E objects will be able to test our model.Comment: 10 pages, 7 figures, accepted for publication in Ap

    Super-critical Accretion Flows around Black Holes: Two-dimensional, Radiation-pressure-dominated Disks with Photon-trapping

    Full text link
    The quasi-steady structure of super-critical accretion flows around a black hole is studied based on the two-dimensional radiation-hydrodynamical (2D-RHD) simulations. The super-critical flow is composed of two parts: the disk region and the outflow regions above and below the disk. Within the disk region the circular motion as well as the patchy density structure are observed, which is caused by Kelvin-Helmholtz instability and probably by convection. The mass-accretion rate decreases inward, roughly in proportion to the radius, and the remaining part of the disk material leaves the disk to form outflow because of strong radiation pressure force. We confirm that photon trapping plays an important role within the disk. Thus, matter can fall onto the black hole at a rate exceeding the Eddington rate. The emission is highly anisotropic and moderately collimated so that the apparent luminosity can exceed the Eddington luminosity by a factor of a few in the face-on view. The mass-accretion rate onto the black hole increases with increase of the absorption opacity (metalicity) of the accreting matter. This implies that the black hole tends to grow up faster in the metal rich regions as in starburst galaxies or star-forming regions.Comment: 16 pages, 12 figures, accepted for publication in ApJ (Volume 628, July 20, 2005 issue

    Thermal Equilibria of Magnetically Supported, Black Hole Accretion Disks

    Full text link
    We present new thermal equilibrium solutions for optically thin and thick disks incorporating magnetic fields. The purpose of this paper is to explain the bright hard state and the bright/slow transition observed in the rising phases of outbursts in BHCs. On the basis of the results of 3D MHD simulations, we assume that magnetic fields inside the disk are turbulent and dominated by the azimuthal component and that the azimuthally averaged Maxwell stress is proportional to the total pressure. We prescribe the magnetic flux advection rate to determine the azimuthal magnetic flux at a given radius. We find magnetically supported, thermally stable solutions for both optically thin and thick disks, in which the heating enhanced by the strong magnetic field balances the radiative cooling. The temperature in a low-β\beta disk is lower than that in an ADAF/RIAF but higher than that in a standard disk. We also study the radial dependence of the thermal equilibrium solutions. The optically thin, low-β\beta branch extends to M˙0.1M˙Edd \dot M \gtrsim 0.1 {\dot M}_{\rm Edd}, in which the temperature anti-correlates with the mass accretion rate. Thus optically thin low-β\beta disks can explain the bright hard state. Optically thick, low-β\beta disks have the radial dependence of the effective temperature Teffϖ3/4T_{\rm eff} \propto \varpi^{-3/4}. Such disks will be observed as staying in a high/soft state. Furthermore, limit cycle oscillations between an optically thick low-β\beta disk and a slim disk will occur because the optically thick low-β\beta branch intersects with the radiation pressure dominated standard disk branch. These limit cycle oscillations will show a smaller luminosity variation than that between a standard disk and a slim disk.Comment: 23 pages, 9 figures, accepted for publication in Ap

    Formation of Obscuring Walls by Radiation Force from Circumnuclear Starbursts and Implications for Starburst-Active Galactic Nucleus Connection

    Get PDF
    We explore the formation of dusty gas walls induced by a circumnuclear starburst around an AGN. We concentrate our attention on the role of the radiation force by a starburst as well as an AGN, where the effects of optical depth of dusty gas are taken into consideration. In two-dimensional axisymmetric space, we analyze the configuration and the stability of geometrically thin walls which are in balance between radiation pressure and gravity. As a result, it is shown that the radiation force by the circumnuclear starburst works to stabilize optically thick walls surrounding the nucleus. In the case of a brighter starburst with a fainter AGN, there form double walls, an inner one of which is located between the nucleus and the circumnuclear starburst, and an outer one of which enshrouds both the starburst regions and the nucleus. The total extinction (Av) of both walls turns out to be ~10 for a brighter starburst. As a consequence, double walls could heavily obscure the nucleus to make the AGN type 2. The outer wall may provide an explanation for the recent indications for large-scale obscuring materials in Seyfert 2's. Also, it is predicted that the AGN type is shifts from type 2 to type 1 in several times 10^7 yr according to the stellar evolution in the starburst. In contrast, if the AGN itself is much brighter than the starburst as a quasar is, then neither wall forms regardless of the starburst activity and the nucleus is likely to be identified as type 1. To conclude, the radiatively-supported gas walls could be responsible for the putative correlation between AGN type and the starbursts, whereby Seyfert 2 galaxies are more frequently associated with circumnuclear starbursts than type 1, whereas quasars are mostly observed as type 1 regardless of star-forming activity in the host galaxies.Comment: 10 pages, 7 figures, accepted for publication in Ap

    Suzaku Observations of the Black Hole H1743-322 in Outburst

    Full text link
    We observed the Galactic black hole candidate H1743-322 with Suzaku for approximately 32 ksec, while the source was in a low/hard state during its 2008 outburst. We collected and analyzed the data with the HXD/PIN, HXD/GSO and XIS cameras spanning the energy range from 0.7-200 keV. Fits to the spectra with simple models fail to detect narrow Fe XXV and Fe XXVI absorption lines, with 90% confidence upper limits of 3.5 eV and 2.5 eV on the equivalent width, respectively. These limits are commensurate with those in the very high state, but are well below the equivalent widths of lines detected in the high/soft state, suggesting that disk winds are partially state-dependent. We discuss these results in the context of previous detections of ionized Fe absorption lines in H1743-322 and connections to winds and jets in accreting systems. Additionally, we report the possible detection of disk reflection features, including an Fe K emission line.Comment: 16 pages, 4 figures, 4 tables. Accepted for publication in ApJ

    Observable Signatures of EMRI Black Hole Binaries Embedded in Thin Accretion Disks

    Get PDF
    We examine the electromagnetic (EM) and gravitational wave (GW) signatures of stellar-mass compact objects (COs) spiraling into a supermassive black hole (extreme mass-ratio inspirals or EMRIs), embedded in a thin, radiation-pressure dominated, accretion disk. At large separations, the tidal effect of the secondary CO clears a gap. We show that the gap refills during the late GW-driven phase of the inspiral, leading to a sudden EM brightening of the source. The accretion disk leaves an imprint on the GW through its angular momentum exchange with the binary, the mass increase of the binary members due to accretion, and its gravity. We compute the disk-modified GWs both in an analytical Newtonian approximation and in a numerical effective-one-body approach. We find that disk-induced migration provides the dominant perturbation to the inspiral, with weaker effects from the mass accretion onto the CO and hydrodynamic drag. Depending on whether a gap is present, the perturbation of the GW phase is between 10 and 1000 radians per year, detectable with the future Laser Interferometer Space Antenna (LISA) at high significance. The Fourier transform of the disk-modified GW in the stationary phase approximation is sensitive to disk parameters with a frequency trend different from post-Newtonian vacuum corrections. Our results suggest that observations of EMRIs may place new sensitive constraints on the physics of accretion disks.Comment: 42 pages, 8 figures, 3 tables, submitted to Phys. Rev.

    Low angular momentum flow model of Sgr A* activity

    Full text link
    Sgr A* is the closest massive black hole and can be observed with the highest angular resolution. Nevertheless, our current understanding of the accretion process in this source is very poor. The inflow is almost certainly of low radiative efficiency and it is accompanied by a strong outflow and the flow is strongly variable but the details of the dynamics are unknown. Even the amount of angular momentum in the flow is an open question. Here we argue that low angular momentum scenario is better suited to explain the flow variability. We present a new hybrid model which describes such a flow and consists of an outer spherically symmetric Bondi flow and an inner axially symmetric flow described through MHD simulations. The assumed angular momentum of the matter is low, i.e. the corresponding circularization radius in the equatorial plane of the flow is just above the innermost stable circular orbit in pseudo-Newtonian potential. We compare the radiation spectrum from such a flow to the broad band observational data for Sgr A*.Comment: Proceedings of the AHAR 2008 Conference: The Universe under the Microscope; Astrophysics at High Angular Resolution, Bad Honef

    Nuclear Polarization of Molecular Hydrogen Recombined on a Non-metallic Surface

    Full text link
    The nuclear polarization of H2\mathrm{H}_2 molecules formed by recombination of nuclear polarized H atoms on the surface of a storage cell initially coated with a silicon-based polymer has been measured by using the longitudinal double-spin asymmetry in deep-inelastic positron-proton scattering. The molecules are found to have a substantial nuclear polarization, which is evidence that initially polarized atoms retain their nuclear polarization when absorbed on this type of surfac
    corecore