242 research outputs found

    Ecology of bryophytes along altitudinal and latitudinal gradients in New Zealand

    Get PDF
    Six altitudinal transects through temperate rain forests were studied at different latitudes in the South and North Island of New Zealand with respect to species numbers of bryophytes, cover and phytomass of epiphytic bryophytes, composition of life forms and ratio liverworts : mosses. Phytodiversity of bryophytes is almost constant from the lowlands to the high montane belt but decreases in the subalpine belt. Similarly, phytomass and cover increase with elevation but decrease in the subalpine belt. The percentage of liverworts increases accordingly and can reach maxima of 80-90%. The most significant life forms are tails and wefts characteristic for hyperhygric conditions, pendents for cloud belts and cushions for subalpine belts. The altitudinal gradient is much stronger then the latitudinal gradient, that means the differences between the elevations within a transect are more important than the differences between the transects. They are attributed to the humidity. The temperate rain forests of New Zealand have similar bryological characteristics as the tropical rain forests in equatorial latitudes in 2000 – 3000 m altitude but differ in the drier subalpine belt and higher phytomass

    Communication systems operating in the 60 GHz ISM band: Overview

    Get PDF
    This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.This paper gives an overview of frequency regulation, standardization, and applications of 60 GHz communication systems. Based on forecasted developments of mobile IP traffic, the motivation for investigating circuits, and systems for the 60 GHz band is underlined. Some physical properties of 60 GHz radio waves are outlined and implications on potential applications are sketched. The current international and European frequency regulation aspects are presented. The main parameters of three different international standards are summarized and compared with each other. Details of channel spacing and channel bonding are given. Based on the investigation of different applications, the main system requirements are derived. Finally, some information on protocol issues and system integration aspects are given.Peer Reviewe

    Recent trends in the timing of the growing season in New Zealand’s natural and semi-natural grasslands

    Get PDF
    We investigate the temporal dynamics of shifts in phenological responses of a range of key stages of the growing season in New Zealand’s three indigenous grassland types over the last 16 years (2001–2016). A near-daily Normalized Difference Vegetation Index (NDVI) time series from MODerate Resolution Imaging Spectroradiometer (MODIS) was used to extract five annual growth phenology indices, namely the Start, End, Length, Peak and Peak NDVI of a growing season. The start of the growing season advanced (i.e. happened earlier) by a median of 7.2, 6.0 and 8.8 days per decade in Alpine, Tall Tussock and Low Producing grassland, whereas the end of the season advanced by a median of 4.5, 0.4 and 0.4 days in the three types respectively. The length of growing season was extended by 3.2, 5.2 and 7.1 days per decade in these three grassland types. Over 86% of the investigated grassland areas showed an advancing (earlier) start of the growing season, and 74% of Alpine grassland showed a trend toward an earlier end of season. Over 63% of all grassland types showed an increase in growing season length. A trend toward earlier growing season peak and overall increasing NDVI in the three grassland types indicate a tendency for increasing vegetation vitality in grassland ecosystems in recent years. The start of growing season was correlated with atmospheric pressure (negatively) and precipitation (positively) changes in winter–spring months, while the timing of the season end is positively correlated with air temperature and solar radiation in summer–autumn months. Our study shows that different grassland types differ in magnitude–but not in direction–of their recent shifts in timing of key growing season stages with high-alpine grasslands showing the strongest response. This study highlights the usefulness of remote sensing for monitoring ecosystem-level phenological shifts over large areas and long time periods

    Cork oak and climate change: disentangling drought effects on cork chemical composition

    Get PDF
    Climate change induces in the Mediterranean region more frequent and extreme events, namely, heat waves and droughts, disturbing forest species and affecting their productivity and product quality. The cork oak (Quercus suber) is present along the western Mediterranean basin and its outer bark (cork) is sustainably collected and used for several products, mainly wine bottle stoppers. Since most cork properties arise from its chemical composition, this research studies the effect of drought on cork chemical composition (suberin, lignin, polysaccharides and extractives) and on polysaccharide and suberin monomeric composition. Three sets of cork samples, from the same site, were examined: in one set the cork grew without drought; in another two drought events occurred during cork growth and in the third one drought event happened. The results show that, in general, drought does not affect the proportion of the main components of cork, the monomers of suberin or of polysaccharides, with few exceptions e.g. drought increased ethanol extractives and xylose in polysaccharides and decreased arabinose in polysaccharides. The variability associated to the tree is much more relevant than the effect of drought conditions and affects all the parameters analyzed. Therefore, our research suggests that the tree genetic information, or its expression, plays a much more important role on the chemical composition of cork than the drought conditions occurring during cork growth. In practical terms, the potential increased occurrence of droughts arising from climatic changes will not compromise the performance of cork as a sealant for wine bottlesinfo:eu-repo/semantics/publishedVersio

    Ethnomedicinal plant knowledge and practice of the Oromo ethnic group in southwestern Ethiopia

    Get PDF
    An ethnomedicinal study was conducted to document the indigenous medicinal plant knowledge and use by traditional healers in southwestern Ethiopia from December 2005 to November 2006. Data were collected from 45 randomly selected traditional healers using semi-structured interviews and observations. Sixty-seven ethnomedicinal plant species used by traditional healers to manage 51 different human ailments were identified and documented. Healers' indigenous knowledge was positively correlated with their reported age but not with their educational level. High degree of consensus was observed among traditional healers in treating tumor (locally known as Tanacha), rabies (Dhukuba Seree) and insect bite (Hadhaa). The use of more than one species was significantly cited for remedy preparations. The reported abundance of the ethnomedicinal plant species varied significantly with respect to the presence of multiple uses of the reported species. Our results showed that ethnomedicinal plant species used by healers are under serious threat due to several factors, which indicates the need for urgent attention towards their conservation and sustainable utilization

    Beyond climate envelopes: effects of weather on regional population trends in butterflies

    Get PDF
    Although the effects of climate change on biodiversity are increasingly evident by the shifts in species ranges across taxonomical groups, the underlying mechanisms affecting individual species are still poorly understood. The power of climate envelopes to predict future ranges has been seriously questioned in recent studies. Amongst others, an improved understanding of the effects of current weather on population trends is required. We analysed the relation between butterfly abundance and the weather experienced during the life cycle for successive years using data collected within the framework of the Dutch Butterfly Monitoring Scheme for 40 species over a 15-year period and corresponding climate data. Both average and extreme temperature and precipitation events were identified, and multiple regression was applied to explain annual changes in population indices. Significant weather effects were obtained for 39 species, with the most frequent effects associated with temperature. However, positive density-dependence suggested climatic independent trends in at least 12 species. Validation of the short-term predictions revealed a good potential for climate-based predictions of population trends in 20 species. Nevertheless, data from the warm and dry year of 2003 indicate that negative effects of climatic extremes are generally underestimated for habitat specialists in drought-susceptible habitats, whereas generalists remain unaffected. Further climatic warming is expected to influence the trends of 13 species, leading to an improvement for nine species, but a continued decline in the majority of species. Expectations from climate envelope models overestimate the positive effects of climate change in northwestern Europe. Our results underline the challenge to include population trends in predicting range shifts in response to climate change

    Climate Change Hastens the Conservation Urgency of an Endangered Ungulate

    Get PDF
    Global climate change appears to be one of the main threats to biodiversity in the near future and is already affecting the distribution of many species. Currently threatened species are a special concern while the extent to which they are sensitive to climate change remains uncertain. Przewalski's gazelle (Procapra przewalskii) is classified as endangered and a conservation focus on the Qinghai-Tibetan Plateau. Using measures of species range shift, we explored how the distribution of Przewalski's gazelle may be impacted by projected climate change based on a maximum entropy approach. We also evaluated the uncertainty in the projections of the risks arising from climate change. Modeling predicted the Przewalski's gazelle would be sensitive to future climate change. As the time horizon increased, the strength of effects from climate change increased. Even assuming unlimited dispersal capacity of gazelles, a moderate decrease to complete loss of range was projected by 2080 under different thresholds for transforming the probability prediction to presence/absence data. Current localities of gazelles will undergo a decrease in their occurrence probability. Projections of the impacts of climate change were significantly affected by thresholds and general circulation models. This study suggests climate change clearly poses a severe threat and increases the extinction risk to Przewalski's gazelle. Our findings 1) confirm that endangered endemic species is highly vulnerable to climate change and 2) highlight the fact that forecasting impacts of climate change needs an assessment of the uncertainty. It is extremely important that conservation strategies consider the predicted geographical shifts and be planned with full knowledge of the reliability of projected impacts of climate change

    How climatic variability is linked to the spatial distribution of range sizes: seasonality versus climate change velocity in sphingid moths

    Get PDF
    Aim: To map the spatial variation of range sizes within sphingid moths, and to test hypotheses on its environmental control. In particular, we investigate effects of climate change velocity since the Pleistocene and the mid-Holocene, temperature and precipitation seasonality, topography, Pleistocene ice cover, and available land area. Location: Old World and Australasia, excluding smaller islands. Methods: We used fine-grained range maps (based on expert-edited distribution modelling) for all 972 sphingid moth species in the research region and calculated, at a grain size of 100 km, the median of range sizes of all species that co-occur in a pixel. Climate, topography and Pleistocene ice cover data were taken from publicly available sources. We calculated climate change velocities (CCV) for the last 21ky as well as 6ky. We compared the effects of seasonality and CCV on median range sizes with spatially explicit models while accounting for effects of elevation range, glaciation history and available land area. Results: Range sizes show a clear spatial pattern, with highest median values in deserts and arctic regions and lowest values in isolated tropical regions. Range sizes were only weakly related to absolute latitude (predicted by Rapoport’s effect), but there was a strong north-south pattern of range size decline. Temperature seasonality emerged as the strongest environmental correlate of median range size, in univariate as well as multivariate models, whereas effects of CCV were weak and unstable for both time periods. These results were robust to variations in the parameters in alternative analyses, among them multivariate CCV. Main conclusions: Temperature seasonality is a strong correlate of spatial range size variation, while effects of longer-term temperature change, as captured by CCV, received much weaker support.The attached document is the author(’s’) final accepted/submitted version of the journal article. You are advised to consult the publisher’s version if you wish to cite from i
    • …
    corecore