
1 

Original Article: 1 

How climatic variability is linked to the spatial distribution of range sizes: 2 

seasonality versus climate change velocity in sphingid moths 3 

Marc Grünig1,2,3, Nicolas Beerli1, Liliana Ballesteros-Mejia4,5, Ian J. Kitching6 & Jan Beck1,7* 4 

 5 

1) University of Basel, Biogeography, Department of Environmental Sciences, Basel, Switzerland 6 

2) Agroscope, Strategic Research Division Plant Protection, Wädenswil, Switzerland 7 

3) ETH Zürich, Landscape Ecology, Institute of Terrestrial Ecosystems, Zürich, Switzerland 8 

4) Universidad Federal de Goias, Laboratório de Genética e Biodiversidade, Goiania, Brazil 9 

5) Sorbonne Universités, Muséum national d’Histoire Naturelle, Paris, France 10 

6) Natural History Museum London, Department of Life Sciences, London, U.K. 11 

7) University of Colorado, Museum of Natural History, Boulder, USA 12 

 13 

*) correspondence: Jan Beck, University of Colorado, Museum of Natural History, 265 UCB, Boulder, 14 

CO 80309, USA. E-mail: jan.beck@colorado.edu 15 

 16 

revised Manuscript for Journal of Biogeography, JBI-15-0680.R3 17 

Wordcounts: Abstract – 276; Main text – 5069 (excl. references), 6743 (incl. 53 references) 18 

Tables: 2 19 

Figures: 3 (2 in colour for online-version) 20 

mailto:jan.beck@colorado.edu


2 

Keywords: Climate change velocity; Old World; Range size; Rapoport effect; Seasonality; Sphingid 21 

moths; 22 



3 

ABSTRACT 23 

Aim: To map the spatial variation of range sizes within sphingid moths, and to test hypotheses on its 24 

environmental control. In particular, we investigate effects of climate change velocity since the 25 

Pleistocene and the mid-Holocene, temperature and precipitation seasonality, topography, Pleistocene ice 26 

cover, and available land area.  27 

Location: Old World and Australasia, excluding smaller islands. 28 

Methods: We used fine-grained range maps (based on expert-edited distribution modelling) for all 972 29 

sphingid moth species in the research region and calculated, at a grain size of 100 km, the median of range 30 

sizes of all species that co-occur in a pixel. Climate, topography and Pleistocene ice cover data were taken 31 

from publicly available sources. We calculated climate change velocities (CCV) for the last 21ky as well 32 

as 6ky. We compared the effects of seasonality and CCV on median range sizes with spatially explicit 33 

models while accounting for effects of elevation range, glaciation history and available land area.  34 

Results: Range sizes show a clear spatial pattern, with highest median values in deserts and arctic regions 35 

and lowest values in isolated tropical regions. Range sizes were only weakly related to absolute latitude 36 

(predicted by Rapoport’s effect), but there was a strong north-south pattern of range size decline. 37 

Temperature seasonality emerged as the strongest environmental correlate of median range size, in 38 

univariate as well as multivariate models, whereas effects of CCV were weak and unstable for both time 39 

periods. These results were robust to variations in the parameters in alternative analyses, among them 40 

multivariate CCV. 41 

Main conclusions: Temperature seasonality is a strong correlate of spatial range size variation, while 42 

effects of longer-term temperature change, as captured by CCV, received much weaker support.   43 
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INTRODUCTION 44 

 The causes of the spatial distribution of species’ range sizes have been debated in biogeography 45 

for at least 20 years (Brown et al., 1996; Gaston, 2003; Morueta-Holme et al., 2013; Veter et al., 2013; Di 46 

Marco & Santini, 2015). Understanding environmental correlates and ultimately the processes behind 47 

range size distributions are an important step towards understanding large-scale species richness patterns 48 

(Stevens, 1989; Jetz & Rahbek, 2002; Graves & Rahbek, 2005; Morueta-Holme et al., 2013). Furthermore, 49 

range size is negatively linked to extinction risk (Gaston, 1998; Davies et al. 2009; Morueta-Holme et al., 50 

2013), e.g. due to climatic change (Gaston, 2003; Thomas et al., 2004; Ohlemüller et al., 2008; Sandel et 51 

al., 2011; Garcia et al., 2014) or land use and habitat fragmentation (Thomas et al., 2004). A better 52 

understanding of what shapes the distribution of range sizes is therefore relevant to basic ecology as well 53 

as conservation (Gaston, 1996; Purvis et al., 2000; Morueta-Holme et al., 2013). 54 

 Many hypotheses have been proposed to explain patterns of range sizes. Janzen (1967) suggested 55 

that species living in regions with high temperature stability throughout the year (i.e., the tropics) are 56 

tolerant to a narrower range of temperatures than species in highly seasonal regions. Stevens (1989) 57 

adopted this idea to explain a positive latitude-range size pattern (which he described as Rapoport’s rule; 58 

Letcher & Harvey, 1994; McCain & Bracy Knight, 2013; Veter et al., 2013).  59 

 Besides such intra-annual variability, long-time climatic oscillations were also proposed to 60 

influence range sizes. Dynesius & Jansson (2000, 2002) and Jansson (2003) connected several biological 61 

phenomena, including range size variation, with long-time climatic oscillations driven by changes in the 62 

Earth’s orbit. These have stronger effects towards the poles and therefore cause larger temperature 63 

changes at higher latitudes. Dynesius & Jansson (2000) argued that areas of long-time climate stability 64 

allow for the persistence of small-ranged species, while only large-ranged species (which often have high 65 

climatic tolerances, are generalists and good dispersers) could survive in regions of low stability. Sandel et 66 

al. (2011) built on these ideas to connect the proportion of small-ranged species with the concept of 67 

climate change velocity (hereafter CVV). 68 
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 Climate change velocity was developed as a measurement for long-time climate variability by 69 

Loarie et al. (2009) and adopted by Sandel et al. (2011). CCV expresses the speed at which species have 70 

to migrate to track a changing climate. CCV is influenced by a temporal gradient of change as well as the 71 

spatial change of climate in a region (which is high where there is high topographic variability). Highest 72 

CCV occurs in flat landscapes with a high magnitude of climatic change, while it is lowest in mountainous 73 

regions with relatively stable climate (because there species do not need to travel far to reach a different 74 

climatic zone; Loarie et al., 2009; Ackerly et al., 2010; Sandel et al., 2011; Burrows et al., 2014). 75 

Focussing on temperature CCV since the last glacial maximum (LGM), Loarie et al. (2009) and Sandel et 76 

al. (2011) suggested a connection between small geographic range (“endemism”) and low CCV, and 77 

discussed this in the light of species’ vulnerability when exposed to high future CCVs. 78 

 Other potentially influencing factors include elevation range, available land area, and long- or 79 

short-term variation of climatic variables other than temperature. Elevational range affects habitat rarity 80 

(Hawkins & Diniz-Filho, 2006). Habitats found in highland regions typically have small area sizes. Hence, 81 

many species that occur there must be expected to have relatively small ranges. Similarly, available land 82 

area could be a relevant predictor in large-extent analyses (Ohlemüller et al., 2008). Terrestrial species can 83 

only have large ranges if there is sufficient land area available. Also, there is no ecological reason why 84 

seasonality (or CCV) effects should be related to temperature variation but not to precipitation (which is a 85 

relevant niche dimension for many species), or even more complex combinations of climatic variables. 86 

 Here we used the range size distributions of Old World sphingid moths, a family of herbivorous 87 

insects, to test the above hypotheses in a competitive manner for their explanatory power. We were 88 

especially interested in the recently published hypothesis of CCV effects (Sandel et al. 2011; i.e., 89 

temperature change velocity) in comparison to the older hypothesis of temperature seasonality (Janzen 90 

1967). We also evaluated the evidence for different mechanisms acting simultaneously in shaping range 91 

sizes (i.e., their relative contribution in explaining patterns after accounting for the other hypothesized 92 

effects).  93 
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 There is no a priori knowledge of what is an appropriate time window of CCV effects for a given 94 

taxon – we focus here on testing Sandel et al.’s (2011) specific hypothesis of post-Pleistocene effects (i.e. 95 

since LGM) as a general mechanism. However, we also use CCV calculations for a different time period 96 

(mid-Holocene to present), as mid-Holocene temperatures in many parts of the world were warmer than 97 

today. This will help to elucidate the suggested mechanism, which is not based on the direction but on the 98 

speed of climate change. Thus, we expect similar relationships of range size with CCV for both time 99 

periods. This also acknowledges that climate change since the LGM has not been linear (e.g., Thompson, 100 

1998). Furthermore, we evaluated the placement of species’ ranges within biomes (Olson et al., 2001). 101 

This will assist in assessing whether range size patterns are mainly due to large-scale habitat (i.e., 102 

vegetation) differences.  103 

  104 

MATERIAL & METHODS 105 

Sphingid moths and range size data 106 

 Sphingid moths are a family of large, mobile and, in some cases, extremely dispersive 107 

Lepidoptera (Kitching & Cadiou, 2000). Caterpillars are folivorous with a moderate degree of hostplant 108 

specialization (typically to plant family or order). Due to their popularity with amateur collectors, more is 109 

known about their taxonomy, distribution and life history than for many other taxa, making them a 110 

suitable model group for global-scale biogeographic studies on insects (Ballesteros-Mejia et al., 2016). 111 

 Distribution maps for all 972 sphingid species found in the research region were available at 5 km 112 

grain size. These data were based on a carefully processed multi-source compilation of specimen records, 113 

combined with species distribution modelling techniques (SDM; based on climatic variables and 114 

vegetation cover) and then expert-edited to account for dispersal limitation (for details and validation see 115 

Ballesteros-Mejia et al., 2016; maps can be browsed in Map of Life, www.mol.org). For each species, 116 

range size was calculated (Appendix S1). We then used up-scaled distribution maps to a 100 km grain to 117 

http://www.mol.org/
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calculate the median range size of the species co-occurring in each pixel (i.e., a 2-D version of “Steven’s 118 

method”; Gaston et al., 1998; Sizling et al., 2009). To provide comparable data with published studies 119 

(Hawkins & Diniz-Filho, 2006; Morueta-Holme et al., 2013) we also calculated average range sizes after 120 

log-transforming the data.  121 

 122 

Environmental predictors 123 

The calculation of the climate change velocity (CCV) followed Sandel et al. (2011) and Loarie et 124 

al. (2009), who described CCV as the temporal gradient of temperature change divided by its spatial 125 

gradient, resulting in a unit of distance per time. We used mean annual temperatures for current conditions 126 

(averages 1950-2000), mid-Holocene (6’000 years before present) and Last Glacial Maximum (LGM; 127 

21’000 years before present). LGM data were derived from two coupled Atmosphere-Ocean General 128 

Circulation Models (AOGCM), CCSM4 and MIROC 3.2 (averaged values). Present and LGM data were 129 

available from WorldClim (www.worldclim.org; Hijmans et al., 2005; accessed Aug. 2013) at a resolution 130 

of 2.5 arcmin (~5 km). Mid-Holocene data was downloaded from PMIP2 (https://pmip2.lsce.ipsl.fr/; 131 

Braconnot et al., 2007; accessed Aug. 2013).  132 

The PMIP2 data has a lower resolution (2.5 degree), which misses more localized climatic effects 133 

caused, e.g., by topography. To obtain data at the same resolution as for WorldClim data (2.5 arcmin), we 134 

interpolated the raster. The same interpolation was applied to the PMIP2 current temperature data. We 135 

then calculated the difference in current temperature between WorldClim and PMIP2 data and added it to 136 

the mid-Holocene data from PMIP2 database to account for elevation effects (and other time-stable 137 

anomalies). This method (A. Wilson, pers. comm.) follows the assumptions that (a) local adiabatic effects 138 

on temperatures have not changed much since the mid-Holocene, and (b) that topographies have remained 139 

stable. To verify this procedure we repeated all steps to calculate a map for the LGM with data from 140 

PMIP2 database and obtained a high correlation with WorldClim data (Pearson’s r = 0.987; equivalent 141 

Mid-Holocene data are now also available at www.worldclim.org).  142 

http://www.worldclim.org/
https://pmip2.lsce.ipsl.fr/
http://www.worldclim.org/
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We calculated the temporal gradient as the difference between present and past temperatures in 143 

each cell after converting all temperatures to Kelvin (K). We converted differences to absolute values to 144 

retrieve positive velocities independent of their sign. We calculated the spatial gradient as the slope of the 145 

temperature over distance, i.e. rate of change for each cell from a 3 x 3 cell neighborhood. Spatial change 146 

rates are mainly driven by elevation difference due to the adiabatic relationship of temperature with air 147 

pressure. We used the slope of current temperatures because the temperature slopes of past climates 148 

correlate very well with these (e.g., current vs. LGM rate, Pearson’s r = 0.997). Values <0.01 K/km were 149 

changed to 0.01 K/km to avoid dividing by zero (or near-zero). The temporal change rates (K/y) were then 150 

divided by the spatial change rates (K/km) and then multiplied with 1000 to yield data in units of m/y. We 151 

denote the velocity from LGM to present as CCV21, the velocity from the mid-Holocene to the present as 152 

CCV6.  153 

To allow for a multidimensional interpretation of climate and CCV (i.e., extending the original 154 

hypothesis of temperature change effects towards precipitation changes and other climatic variation), we 155 

applied methodology developed by Hamann et al. (2015). This method for predicting CCV effects 156 

involves an ordination of climatic data, so it does not allow a direct test of the ‘temperature CCV’-157 

hypothesis of Sandel et al. (2011). However, it assures that other, more complex and multivariate CCV 158 

effects within the given time window are not overlooked. As these analyses did not alter our conclusion, 159 

we present them in the Appendix (S6). 160 

Temperature seasonality (Tseas) is measured as the standard deviation of monthly mean 161 

temperatures throughout the year, and precipitation seasonality (Precipseas) as its coefficient of variation 162 

(data from www.worldclim.org; Hijmans et al., 2005). 163 

We calculated available land area as the area of land cells in a given radius around a cell 164 

(Morueta-Holme et al., 2013). As it is somewhat arbitrary what radius is to be used for this calculation, we 165 

tested (in preliminary trials) different radii that lead to circles with maximum areas of the lower quartile, 166 

median and upper quartile of range sizes. We found that the radius related to the upper quartile of ranges 167 
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sizes (i.e., 955 km) led to the best model fits and we used the resulting area calculations for further 168 

analyses.  169 

 All further GIS manipulations and analyses were carried out in Mollweide World equal area 170 

projection at 100 km grain size. Climate data, originally processed at 2.5 arcmin, were aggregated and 171 

projected to this grid. Pleistocene ice extent (Ehlers et al., 2011) was coded as one (ice) and zero (no ice). 172 

Elevation range was calculated from a digital elevation model (Stein et al., 2015). Furthermore, we used a 173 

broad classification of zoogeographic realms from Holt et al. (2013). 174 

 We restricted the study region in various ways to reduce unwanted variability and bias. First, all 175 

smaller islands were excluded to avoid effects of dispersal limitation of island endemics on range data (as 176 

these will not contribute to our understanding of the general drivers of range size). Exceptions were made 177 

for the British Isles, Sumatra, Borneo, Madagascar and New Guinea, because they are either large enough 178 

to develop range size variability within the island, or were connected to continental regions in the relevant 179 

past (i.e., LGM). Since the connectivity argument cannot be made for Madagascar (but for all others of the 180 

large islands), we also re-run analyses without Madagascar (which did not change conclusions; data not 181 

shown). 182 

 Second, we excluded cells with a species richness <5, because random effects in the data have 183 

great potential to introduce noise into ecological patterns. This restriction affected mostly desert regions in 184 

North Africa and Western Australia, as well as much of north-eastern Siberia. Third, we excluded coastal 185 

cells to avoid unwanted effects due to area size variation of cells. After applying these restrictions, 762 186 

species continued to contribute to range size data in 7,108 pixels. 187 

 188 

Statistical analyses 189 

 All data (predictors and response) were standardized to a mean of zero and a standard deviation of 190 

one, which makes model coefficients directly comparable. All variables except land area were log10- 191 
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transformed prior to standardization to reach normality. We tested predictor data for collinearity, finding 192 

that all correlations between variable pairs were weak (r2 <0.26). In a preliminary analysis step, we used 193 

model selection (Burnham & Anderson, 2005) to compare a full model with all hypothesized effects (no 194 

interactions) to simplified models of various subsets of these predictors. We present both the Bayesian 195 

Information Criterion (BIC) to account for very large sample sizes, as well as Akaike’s Information 196 

Criterion (AIC) for comparison. 197 

 We based the main analyses on univariate regression of the above predictors, as well as on their 198 

combination in a multivariate linear model. Because our dataset contained spatially structured data, 199 

ordinary least square (OLS) models are most likely to be biased in significance assessments and possibly 200 

also in coefficient estimates (Bini et al., 2009). Therefore, we also present results from a spatial 201 

simultaneous autoregressive error (SAR) model (function errorsarlm in R-package spdep; neighbourhood 202 

distance of 5000 km, based on preliminary trials; residual autocorrelation remained high only over very 203 

short distances of <200 km (concluded from correlograms of residuals), which we considered acceptable 204 

at our data resolution and extent). By comparing results for OLS and SAR the reader can appreciate the 205 

potential effects of spatial structure in our data. 206 

 Zoogeographic regions differ in their evolutionary history, but it is unclear to what extent this may 207 

affect range sizes (e.g., whether or not range size data carry phylogenetic signal; Jablonski, 2008; Cardillo, 208 

2015). Furthermore, available zonations are based on vertebrate taxa, which may be different to the 209 

appropriate (yet unknown) zonation for sphingid moths. For these reasons, we calculated all analyses with 210 

and without additional consideration of zoogeographic regions (as binary dummy predictors). Because 211 

they led to the same conclusions, we present only models without zoogeographic regions in the main text 212 

(see Appendix S4 for inclusion).  213 

 Analyses were carried out in R 3.3 (incl. packages spdep, ncf). We present pseudo-R2 values of 214 

the (likelihood-fitted) models, calculated from a linear regression of model prediction vs. observed data. 215 
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 216 

RESULTS 217 

 Estimated range sizes varied over seven orders of magnitude, from 75 to 53.4 x 106 km2 (for raw 218 

data see Appendix S1). Range size data resembled a left-skewed log-normal distribution (Fig. S2.1 in 219 

Appendix S2), as commonly observed in such data (Gaston, 2003); there are many more small-ranged 220 

than large-ranged species. Fig. 1 maps median range sizes across the research region. Largest range sizes 221 

were concentrated in the deserts of North Africa and the Middle East, as well as the Arctic. Small range 222 

sizes were common in Madagascar, New Guinea and Australia. Notably, in the Eastern Palearctic as well 223 

as the Pamir/Hindukush region, small to medium range sizes stretch much further north than in the 224 

Western part of the research region. There is a clear North-South decline in range sizes (Pearson’s r = 225 

0.656), while a correlation of range size with absolute latitude, as expected by Rapoport’s effect (Stevens 226 

1989), is weak (Pearson’s r <0.225).  227 

 228 

Environmental correlates of range size variation. 229 

 Patterns of all environmental predictors are mapped in Fig. 2. Climate change velocities derived 230 

for the period from LGM to the present (CCV21) exhibit a very different pattern to that from the mid-231 

Holocene to the present (CCV6). Likewise, temperature seasonality is distributed differently than 232 

precipitation seasonality. Univariate models with median range sizes (Fig. 3, Table 1) indicate strong 233 

positive effects of temperature seasonality and land area, slightly weaker, negative correlations with 234 

elevation range, and almost no effect of precipitation seasonality. CCV measures are relatively weak and 235 

inconsistent in strength (positive for CCV21, negative for CCV6; note that this is not due to opposite 236 

temperature gradients, as velocities are based on absolute change). 237 

 Model selection based on AIC as well as BIC (Appendix S3) showed that models containing all 238 
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(or nearly all) predictors were most useful for predicting range size variability. In particular, the full model 239 

(7 predictors) was considered best if biogeographic regions were not included (ΔAIC = 16, ΔBIC >8 to 240 

second-best model; Table S3.1). For models including biogeographic regions as predictors (Table S3.2), 241 

all top-models had 5-7 predictors (additional to biogeographic regions), whereas the full model was 242 

ranked second (ΔAIC = 1.7) or third (ΔBIC = 8.6), depending on the information criterion. For 243 

consistency among the following analyses, we therefore chose to always use the full models for in-depth 244 

assessments of predictor effect.  245 

 Table 2 shows results for multivariate models containing all predictor variables. Both modelling 246 

approaches (spatial and non-spatial) confirmed strong positive effects of temperature seasonality and land 247 

area, and negative effects of elevation range. Positive effects of LGM ice extent were weaker but 248 

consistent, whereas we could neither find unequivocal support for partial effects of precipitation 249 

seasonality, nor for both CCV measures. Relatively weak effects of CCV21, in particular, changed sign 250 

depending on whether OLS or SAR models were used, whereas CCV6 effects were different in direction 251 

to those proposed by the hypothesis (i.e., higher climate change velocity was associated with smaller 252 

ranges). Fig. 3 shows partial effects for selected variables. 253 

 Model selection (Appendix S3) as well as OLS and SAR including effects of biogeographic realm 254 

(Appendix S4), led to the same conclusions. Furthermore, analyses for average log-transformed range 255 

sizes (instead of medians; Appendix S5) were consistent with these assessments. Using a multivariate 256 

metric of CCV (Hamann et al., 2015), based on six climatic variables, did not alter our conclusion of weak 257 

CCV effects compared to those of temperature seasonality alone (Appendix S6). Range size patterns were 258 

not related to biome area sizes (Fig. S7.2 in Appendix S7), hence biome size does not provide an 259 

alternative, arguably more parsimonious explanation of range size patterns. 260 

  261 

DISCUSSION 262 
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Our data indicated that, for sphingid moths within the geographic restrictions of our analyses (i.e., 263 

continental Old World & Australia), current intra-annual temperature variability explains statistically the 264 

spatial variation of geographic range sizes much better than longer-term variation as captured by CCV 265 

since the LGM or mid-Holocene. Available land area and elevation range proved important covariates in 266 

the system, whereas Pleistocene ice extent had relatively low impact across the research region and 267 

precipitation seasonality apparently played no role.  268 

 269 

Temperature seasonality fits better than CCV  270 

 Unlike earlier studies (e.g., Sandel et al. 2011), we did not investigate the CCV-range size link in 271 

isolation. If we had, we would have concluded a moderately positive effect (Table 1). By comparing CCV 272 

against effects of other hypothetical drivers of range size variation, in univariate and multivariate models, 273 

we can evaluate more fully the empirical support for CCV as a mechanism shaping range size 274 

distributions. Even though broad spatial patterns of temperature seasonality and CCV resemble each other 275 

(Fig. 2), collinearity should not have seriously biased analyses (e.g., Tseas vs. CCV21, Pearson’s r = 0.382). 276 

Our data suggest that hypothetical mechanisms acting through adaptations to current climates (i.e., 277 

seasonality, Janzen 1967) are better-supported explanations of range size patterns than those that invoke 278 

climatic dynamics of the past (i.e., CVV). This view is also suggested by the inconsistent direction of 279 

effects of LGM- and mid-Holocene CCV in our models (but see discussion below). However, our analyses 280 

carry the caveat that current temperature seasonality may be correlated to climate variation (hence, CVV) 281 

at an unspecified point in the past. Thus, statistical support for seasonality does not rule out more complex 282 

causal pathways – it only rejects CCV effects as tested (i.e., temperature during the two tested time 283 

periods). 284 

 Temperature variation between the LGM and the present is one of the strongest climatic changes 285 

of the Quaternary (Ruddiman, 2001). However, temperatures did not change linearly (as implied by CCV 286 
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calculations), but included many smaller shifts and oscillations, as evident from locally studied stable 287 

isotopes from ice cores, or from pollen records (Thompson, 1998; Claussen et al., 1999; Davis et al., 288 

2003). During the mid-Holocene, temperatures in some areas (e.g., northern Europe) were higher than 289 

today (Davis et al., 2003). We would have expected that CCV calculations of both time periods should 290 

have similar effects on range sizes if the velocity, not the direction, of climate change mattered. However, 291 

we found inconsistent signs of effects (Tables 1 & 2). Negative links indicate that high velocity regions 292 

are associated with small range size. In the absence of reasonable ecological interpretation, this is possibly 293 

a spurious finding. Model misspecification is always a possibility with messy ecological data (in this study 294 

and others). Furthermore, climatic variation since the Holocene was of smaller magnitude than that since 295 

the Pleistocene, so CCV21 effects may have overridden CCV6 effects in some parts of the world, leading 296 

to unclear patterns. Univariate models (Table 1) showed that CCV since the mid-Holocene had only a very 297 

low explanatory power as a single variable. This supports the assessment that temperature change velocity 298 

since the mid-Holocene did not influence species range sizes. We had also considered CCV effects from 299 

the LGM to the mid-Holocene (not shown), which did not lead to further insights. In conclusion, finding 300 

consistent effects of CCV21 and CCV6 would have strengthened the case for the proposed mechanism of 301 

CCV acting through selection of species' migration speed and mobility, or their niche breadth. Not finding 302 

them in our analyses, however, may be due to a range of methodological issues that do not allow clear 303 

inference.  304 

 The correlation with current seasonality, however, does not rule out the possibility that seasonality 305 

patterns of past times shaped range sizes (as the seasonal pattern did not change much through time; e.g., 306 

WorldClim LGM seasonality vs. current seasonality, Pearson’s r = 0.999). However, we find it intriguing 307 

that range size effects of long-term climatic variability can be theoretically explained in an elegant manner 308 

as the outcome of selection for mobile, wide-niched taxa (Dynesius & Jansson, 2002; Sandel et al., 2011), 309 

while the exact mechanism behind a seasonality effect, which we support here empirically, is somewhat 310 

unclear (Janzen, 1967; Stevens, 1998, 1992; McCain & Bracy Knight, 2011). A combination of 311 

physiological niche measures and spatially explicit evolutionary modelling may be useful to disentangle 312 
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the various pathways of how adaptation to high local, or range-wide, climate variability may lead to wider 313 

niches and larger geographic ranges (Gaston, 2003).  314 

 While the data in this study reject the CCV hypothesis in the tested timeframes, it may be argued 315 

that these were not appropriate to the evolutionary history, migration ability, generation length or other 316 

biological traits of the studied taxon. For example, high mobility in sphingids may have led to new 317 

equilibria much faster after climatic disturbance than, for example, in poorly-dispersing amphibians 318 

(Sandel et al., 2011). Thus, our results cannot reject the general idea that CCV at any, unspecified time 319 

window had effects on today’s range size distribution. However, without an a priori hypothesis on a 320 

specific, appropriate time window, rigorous scientific testing is impossible (we are not aware of any 321 

specific CCV hypothesis for alternative timeframes, for sphingids or any other taxon). Data-mining for 322 

links between any CCV and range size data for a given taxon may give interesting exploratory clues to 323 

relevant drivers, but this cannot be viewed as hypothesis testing (see Forstmeier et al., 2016, for a general 324 

critique of post-hoc ‘testing’ in biological science). 325 

 326 

Available habitat area matters 327 

 Habitat area, as pointed out by Morueta-Holme et al. (2013), is an important pre-condition for the 328 

development of species range sizes. Without land, there is no potential for expansion in terrestrial species. 329 

This effect is strong and obvious on small, isolated islands, where many endemics are typically found. 330 

However, after excluding these from our analyses we still recovered relatively strong land area effects on 331 

median range sizes (Tables 1 & 2). Many small-ranged species in Madagascar, New Guinea and 332 

Australia's east, in particular, are associated with small areas of available land in the vicinity. Land area, 333 

however, is only a crude proxy for suitable habitat. We can expect that the availability of homogeneous, 334 

suitable habitat (e.g., size of biomes or ecoregions; Jetz & Fine 2012) could have an even larger impact on 335 

the potential range size of a species. Species adapted to widespread habitats should, all other conditions 336 

being equal, have larger ranges. However, in the absence of detailed knowledge of each species' 337 
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requirements, this is difficult to test in any objective manner. 338 

Habitat rarity is also one (of several) potential explanations for the effects of elevation range. 339 

Highlands have smaller areas than lowlands and, as there tends to be taxonomic turnover from lowland to 340 

highland regions (for sphingids: Beck et al., 2012), highlands will contain species adapted to those rare 341 

habitats. Additionally or alternatively, elevation gradients may act as dispersal barriers or ecotones that 342 

facilitate speciation (Doebeli & Dieckmann, 2003). Highlands may therefore be associated with the 343 

presence of young, yet small-ranged taxa. Furthermore, elevation gradients act as buffers to climatic 344 

change (Hawkins & Diniz-Filho, 2006). The latter effect is essentially the suggested mechanism of CCV, 345 

as climatic stability (due to easy migration up and down a mountain) would lower extinction rates and 346 

gives small-ranged species a higher chance to survive (Burgess et al., 2007). In line with this, in other taxa 347 

phylogenies (Smith et al., 2007) and richness patterns (Collwell et al., 2008) on mountains seem to 348 

support the idea of highest survivability at mid-elevations on mountains. Elevation range of grid cells was 349 

a very weak univariate predictor of range sizes, but had a strong effect in multivariate models. Thus, while 350 

an additional effect of mountains on range size is evident (irrespectively of the mechanism) it is not a 351 

factor that can serve as a main determinant of the global-scale pattern (given that much variability occurs 352 

also across lowland regions, Fig. 1).  353 

 354 

Ice cover and precipitation 355 

 The extent of the glaciation is an effect of Pleistocene history that goes beyond temperature 356 

effects, as it determines the available land area for all taxa than depend on plant growth. Glaciation history 357 

undoubtedly affects species richness and composition in Europe and in particular in North America, where 358 

glaciation was more extensive (Morueta-Holme et al., 2013). By adding Pleistocene ice extent as a 359 

separate predictor to our analysis, we recovered consistent, although not particularly strong effects in the 360 

multivariate model (Table 2). Given that sphingid moths are generally very mobile, that extensive 361 

glaciation was restricted to northern Europe, and that southern European species are also relatively wide-362 



17 

ranging (Fig. 1), it is perhaps not surprising that the ice effect was not overly strong. However, glaciation 363 

history, in combination with high CCV, may be a reason for different latitudinal range size clines in 364 

Western Europe compared to East Asia (Fig. 1), a pattern also evident in data from Sandel et al. (2011). 365 

Pleistocene refuge areas, such as Iberia, Italy and the Balkans (Hewitt, 1999; Sommer & Nadachowski, 366 

2006), had clearly lower CCV (Fig. 2). 367 

A surprising result was the apparent irrelevance of precipitation seasonality in explaining range 368 

size variation. The mechanisms suggested for effects of temperature seasonality should also be relevant 369 

for precipitation, and the map of range size variation suggests higher values in low-precipitation regions at 370 

least in the subtropics and tropics (e.g., fringes of Sahara, Namib, Australian deserts). Although there are 371 

options for artefacts – e.g., niche modelling may have an inherent tendency to overestimate the range 372 

filling (or occupancy) of desert species (who may be dependent on water sources other than precipitation, 373 

unknown to the niche models), and Worldclim precipitation data may lack precision in tropical regions – 374 

we find it surprising that this absence of a precipitation effect has so far not been a topic of the scientific 375 

discourse. 376 

 Our multivariate model explained a substantial part of the near-global range size variation studied 377 

here (OLS: 57%, SAR: 69%; Table 2) from only a few environmental correlates, and results clearly 378 

supported some variables while deeming others irrelevant. Nevertheless, statistical as well as principal 379 

issues remain to be solved before we can optimistically claim to understand how climate and other factors 380 

shape range sizes and endemism. For example, large-ranged species generally contribute overly to pixel-381 

based analyses (a phenomenon of pseudo-replication; Jetz & Rahbek, 2002), but it is far from trivial to 382 

overcome this effect. Sizling et al. (2009) pointed out how geometric effects alone can lead to (in parts) 383 

counter-intuitive patterns of range size and species richness. Furthermore, phylogeny may link species’ 384 

occurrences (i.e., closely related taxa tend to occur in nearby regions) with their range sizes (Beck et al., 385 

2006; Jablonski, 2008; Cardillo, 2015). It is not straightforward to control analyses simultaneously for 386 

spatial and phylogenetic effects of non-independent data. Last, and most important in our view, unclear 387 
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ideas on mechanisms lead to vague hypothesis predictions, which reduces the inference value of tests. 388 

This highlights the need to investigate more thoroughly how seasonality affects niche evolution, and what 389 

testable predictions can be derived from that.  390 

 391 

CONCLUSIONS 392 

 We found a distinct spatial pattern of range size variation that does not conform to Rapoport's 393 

effect, but showed an across-tropics North-South pattern (cf. Di Marco & Santini, 2015). This fits with the 394 

long-standing observation that northern hemisphere studies tend to find support for a Rapoport pattern 395 

while southern hemisphere studies do not (Gaston et al., 1998). Our findings confirmed that regions 396 

directly or indirectly associated with high climatic instability selected for species with large range sizes. 397 

However, among variables of climatic instability, temperature seasonality was the strongest empirical 398 

predictor of the range size distribution, while measures of CCV received much weaker support. This 399 

illustrates the inference value of testing competing hypotheses in comparison to each other (McGill, 2003).  400 

 Although our models explained a substantial proportion of the measured range variability across a 401 

near-global study extent, we see need for caution. Without deeper insights (e.g., from physiology and 402 

evolutionary modelling) into evolutionary mechanisms of how niche evolution responds to climatic 403 

variability (e.g., seasonality), it is difficult to move from statistical pattern search towards true testing of 404 

mechanistic hypotheses.   405 
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Tables 561 

Table 1 Results of univariate linear models modelling predicting median range size.  562 

 SlopeOLS tOLS R2
OLS SlopeSAR zSAR R2

SAR PSAR 
CCV21 0.388 35.39 0.150 0.107 11.41 0.564 <0.0001 
CCV6 -0.228 -19.75 0.052 -0.046 -5.13 0.565 <0.0001 
Tseas 0.545 54.72 0.296 0.479 44.94 0.650 <0.0001 
Precipseas -0.143 -12.20 0.020 0.060 6.58 0.572 <0.0001 
Elev. range -0.196 -16.87 0.038 -0.168 -20.07 0.583 <0.0001 
Land area 0.566 57.78 0.320 0.296 20.25 0.572 <0.0001 
Ice 1.131 14.25 0.028 -0.066 -1.13 0.565 <0.0001 
 563 

All modelling was carried out on standardized data (except “Ice”, a binary variable); sample size N = 564 

7,108 pixels, grain size = 100 km. All OLS regressions were highly significant (not shown). Spatial 565 

autoregressive models (SAR) were used to control for autocorrelation. Pseudo-R2 values for SAR were 566 

based on a regression of modelled vs. observed data. 567 

 568 

Table 2 Results of a multivariate model predicting median range size.  569 

 SlopeOLS tOLS SlopeSAR zSAR PSAR 
CCV21 0.019 1.61 -0.043 -4.14 <0.0001 
CCV6 -0.107 -11.32 -0.063 -7.44 <0.0001 
Tseas 0.308 30.00 0.473 43.49 <0.0001 
Precipseas -0.067 -7.38 -0.021 -2.44 0.015 
Elev. range -0.276 -28.07 -0.176 -20.08 <0.0001 
Land area 0.510 59.00 0.371 27.88 <0.0001 
Ice 0.844 14.79 0.433 8.56 <0.0001 
 570 

All modelling was carried out on standardized data (sample size N = 7,108 pixels, grain size 100 km). 571 

OLS model fit was R2
adj = 0.571, SAR had a pseudo-R2 = 0.691.  572 
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Figure legends 573 

Fig. 1 Median range sizes per 100 km pixel (units: standard deviations, SD). Calculations are based on the 574 

962 species occurring in map pixels shown here. Small islands, coastal cells, and pixel with less than five 575 

species were excluded. 576 

 577 

Fig. 2 Maps of predictor variables: (a) climate change velocity since the last glacial maximum (LGM; 578 

CCV21), (b) climate change velocity since mid-Holocene (CCV6), (c) elevation range, (d) ice extent 579 

during LGM, (e) temperature seasonality, (f) precipitation seasonality, (g) land area, (h) zoogeographic 580 

regions (for analysis see Tables S3.2 in Appendix S3, and Appendix S4). (d) and (h) are measured as 581 

categorical variables; all others were standardized to a mean of zero and a SD of one. 582 

 583 

Fig. 3 Effects of temperature seasonality (Tseas) and LGM climate change velocity (CCV21) on median 584 

range size. Upper: Univariate plots of (a) Tseas and (b) CCV21. LOESS fits are shown to visualize patterns. 585 

Lower: Partial effects from a multivariate SAR model for (c) Tseas and (d) CCV21. All variables were z-586 

transformed and measured in standard deviations (details in Tables 1 & 2).  587 
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