290 research outputs found
Exchange bias and asymmetric hysteresis loops from a microscopic model of core/shell nanoparticles
We present Monte Carlo simulations of hysteresis loops of a model of a
magnetic nanoparticle with a ferromagnetic core and an antiferromegnetic shell
with varying values of the core/shell interface exchange coupling which aim to
clarify the microscopic origin of exchange bias observed experimentally. We
have found loops shifts in the field direction as well as displacements along
the magnetization axis that increase in magnitude when increasing the
interfacial exchange coupling. Ovelap functions computed from the spin
configurations along the loops have been computed to explain the origin and
magnitude of these features microscopically.Comment: 3 pages, 3 figures. To be presented at the 3rd JEMS 2006, San
Sebastian (Spain), June 26-30th 2006; Exchange Bias Symposium. More
information at this web page: http://hermes.ffn.ub.es/oscar/Articles.htm
Uncompensated magnetization and exchange-bias field in LaSrMnO/YMnO bilayers: The influence of the ferromagnetic layer
We studied the magnetic behavior of bilayers of multiferroic and nominally
antiferromagnetic o-YMnO (375~nm thick) and ferromagnetic
LaSrMnO and LaCaMnO (nm), in particular the vertical magnetization shift and exchange
bias field for different thickness and magnetic dilution of the
ferromagnetic layer at different temperatures and cooling fields. We have found
very large shifts equivalent to up to 100\% of the saturation value of
the o-YMO layer alone. The overall behavior indicates that the properties of
the ferromagnetic layer contribute substantially to the shift and that
this does not correlate straightforwardly with the measured exchange bias field
.Comment: 10 figures, 8 page
Comment on: "Revealing common artifacts due to ferromagnetic inclusions in highly oriented pyrolytic graphite", by M. Sepioni, R.R. Nair, I.-Ling Tsai, A.K. Geim and I.V. Grigorieva, EPL 97 (2012) 47001
This comment addresses several issues in the paper by Sepioni et al., where
it is stated that the ferromagnetism in pristine highly oriented pyrolytic
graphite (HOPG) reported by several groups in the previous years is most likely
due to impurity contamination. In this comment, clear arguments are given why
this statement is not justified. Furthermore, it is pointed out, that there are
already measurements using element-sensitive microscopic techniques, e.g. X-ray
Magnetic Circular Dichroism (XMCD) that directly proved the intrinsic origin of
the ferromagnetism in graphite, also in pristine HOPG.Comment: 1, 0 figures, 9 reference
Direct Observation of Large Amplitude Spin Excitations Localized in a Spin-Transfer Nanocontact
We report the direct observation of large amplitude spin-excitations
localized in a spin-transfer nanocontact using scanning transmission x-ray
microscopy. Experiments were conducted using a nanocontact to an ultrathin
ferromagnetic multilayer with perpendicular magnetic anisotropy. Element
resolved x-ray magnetic circular dichroism images show an abrupt onset of spin
excitations at a threshold current that are localized beneath the nanocontact,
with average spin precession cone angles of 25{\deg} at the contact center. The
results strongly suggest that we have observed a localized magnetic soliton.Comment: 5 pages, 3 figure
The role of hydrogen in room-temperature ferromagnetism at graphite surfaces
We present a x-ray dichroism study of graphite surfaces that addresses the
origin and magnitude of ferromagnetism in metal-free carbon. We find that, in
addition to carbon states, also hydrogen-mediated electronic states
exhibit a net spin polarization with significant magnetic remanence at room
temperature. The observed magnetism is restricted to the top 10 nm of
the irradiated sample where the actual magnetization reaches emu/g
at room temperature. We prove that the ferromagnetism found in metal-free
untreated graphite is intrinsic and has a similar origin as the one found in
proton bombarded graphite.Comment: 10 pages, 5 figures, 1 table, submitted to New Journal of Physic
-Electron Ferromagnetism in Metal Free Carbon Probed by Soft X-Ray Dichroism
Elemental carbon represents a fundamental building block of matter and the
possibility of ferromagnetic order in carbon attracted widespread attention.
However, the origin of magnetic order in such a light element is only poorly
understood and has puzzled researchers. We present a spectromicroscopy study at
room temperature of proton irradiated metal free carbon using the elemental and
chemical specificity of x-ray magnetic circular dichroism (XMCD). We
demonstrate that the magnetic order in the investigated system originates only
from the carbon -electron system.Comment: 10 pages 3 color figure
Direct visualization of dynamic magnetic coupling in a Co/Py bilayer with picosecond and nanometer resolution
We present a combination of ferromagnetic resonance (FMR) with spatially and
time-resolved X-ray absorption spectroscopy in a scanning transmission X-ray
microscope (STXM-FMR). The transverse high frequency component of the
resonantly excited magnetization is measured with element-specifity in a
Permalloy (Py) disk - Cobalt (Co) stripe bilayer microstructure. STXM-FMR
mappings are snapshots of the local magnetization-precession with nm spatial
resolution and ps temporal resolution. We directly observe the transfer of
angular momentum from Py to Co and vice versa at their respective
element-specific resonances. A third resonance could be observed in our
experiments, which is identified as a coupled resonance of Py and Co.Comment: Version submitted to Physical Review Applied with updated author list
and supplemental information (Ancillary file
- …