1,105 research outputs found

    WHIZARD 2.2 for Linear Colliders

    Full text link
    We review the current status of the WHIZARD event generator. We discuss, in particular, recent improvements and features that are relevant for simulating the physics program at a future Linear Collider.Comment: Talk presented at the International Workshop on Future Linear Colliders (LCWS13), Tokyo, Japan, 11-15 November 201

    Minimal Gauge Invariant Classes of Tree Diagrams in Gauge Theories

    Get PDF
    We describe the explicit construction of groves, the smallest gauge invariant classes of tree Feynman diagrams in gauge theories. The construction is valid for gauge theories with any number of group factors which may be mixed. It requires no summation over a complete gauge group multiplet of external matter fields. The method is therefore suitable for defining gauge invariant classes of Feynman diagrams for processes with many observed final state particles in the standard model and its extensions.Comment: 13 pages, RevTeX (EPS figures

    MadEvent: Automatic Event Generation with MadGraph

    Full text link
    We present a new multi-channel integration method and its implementation in the multi-purpose event generator MadEvent, which is based on MadGraph. Given a process, MadGraph automatically identifies all the relevant subprocesses, generates both the amplitudes and the mappings needed for an efficient integration over the phase space, and passes them to MadEvent. As a result, a process-specific, stand-alone code is produced that allows the user to calculate cross sections and produce unweighted events in a standard output format. Several examples are given for processes that are relevant for physics studies at present and forthcoming colliders.Comment: 11 pages, MadGraph home page at http://madgraph.physics.uiuc.ed

    Modern Particle Physics Event Generation with WHIZARD

    Full text link
    We describe the multi-purpose Monte-Carlo event generator WHIZARD for the simulation of high-energy particle physics experiments. Besides the presentation of the general features of the program like SM physics, BSM physics, and QCD effects, special emphasis will be given to the support of the most accurate simulation of the collider environments at hadron colliders and especially at future linear lepton colliders. On the more technical side, the very recent code refactoring towards a completely object-oriented software package to improve maintainability, flexibility and code development will be discussed. Finally, we present ongoing work and future plans regarding higher-order corrections, more general model support including the setup to search for new physics in vector boson scattering at the LHC, as well as several lines of performance improvements.Comment: 7 pages; contribution to the proceedings of the conference "ACAT 2014 (Advanced Computing and Analysis Techniques in physics)", Prague, Czech Republic, September 201

    Cosmological and Black Hole Spacetimes in Twisted Noncommutative Gravity

    Full text link
    We derive noncommutative Einstein equations for abelian twists and their solutions in consistently symmetry reduced sectors, corresponding to twisted FRW cosmology and Schwarzschild black holes. While some of these solutions must be rejected as models for physical spacetimes because they contradict observations, we find also solutions that can be made compatible with low energy phenomenology, while exhibiting strong noncommutativity at very short distances and early times.Comment: LaTeX 12 pages, JHEP.st

    Top-quark physics in six-quark final states at the Next Linear Collider

    Get PDF
    The processes of six-quark production with one bbˉb\bar b pair are studied by means of a complete tree-level electroweak calculation. The top-quark signal is examined: the importance of electroweak backgrounds, of the order of 10% above the ttˉt\bar t threshold and of about 30% of the purely electroweak signal at threshold, is further stressed by studying the dependence of the cross-section at threshold on the Higgs mass in the range between 100 GeV and 185 GeV, and finding variations of the order of 10%. In the study of some event-shape variables, a strong effect of initial-state radiation is found, in particular for the thrust distribution, which is studied for several centre-of-mass energies at the TeV scale. The effectiveness of cuts on the thrust for isolating QCD backgrounds, as pointed out by some authors, is confirmed also in the presence of electroweak backgrounds and initial-state radiation.Comment: LaTeX (using elsart.sty), 17 pages, 9 figures include

    High energy improved scalar quantum field theory from noncommutative geometry without UV/IR-mixing

    Full text link
    We consider an interacting scalar quantum field theory on noncommutative Euclidean space. We implement a family of noncommutative deformations, which -- in contrast to the well known Moyal-Weyl deformation -- lead to a theory with modified kinetic term, while all local potentials are unaffected by the deformation. We show that our models, in particular, include propagators with anisotropic scaling z=2 in the ultraviolet (UV). For a \Phi^4-theory on our noncommutative space we obtain an improved UV behaviour at the one-loop level and the absence of UV/IR-mixing and of the Landau pole.Comment: 4 pages, no figures, elsarticle.cls; references adde

    Spacetime Noncommutativity in Models with Warped Extradimensions

    Full text link
    We construct consistent noncommutative (NC) deformations of the Randall-Sundrum spacetime that solve the NC Einstein equations with a non-trivial Poisson tensor depending on the fifth coordinate. In a class of these deformations where the Poisson tensor is exponentially localized on one of the branes (the NC-brane), we study the effects on bulk particles in terms of Lorentz-violating operators induced by NC-brane interactions. We sketch two models in which massive bulk particles mediate NC effects to an almost-commutative SM-brane, such that observables at high energy colliders are enhanced with respect to low energy and astrophysical observables.Comment: 15 pages, LaTeX, pdf figures included, to appear in JHE
    • …
    corecore