184 research outputs found

    An importance of diazotrophic cyanobacteria as a primary producer during Cretaceous Oceanic Anoxic Event 2

    No full text
    International audienceIn Livello Bonarelli black shale deposited during Cretaceous Oceanic Anoxic Event 2 (OAE-2, ca. 94 Ma), nitrogen isotopic compositions of bulk sediments are in a narrow range from ?2.7 to ?0.7. We also determined molecular distribution and nitrogen isotopic compositions of geoporphyrins extracted from the black shale. The nitrogen isotopic compositions of C32 Ni deoxophylloerythroetioporphyrin (DPEP) and total Ni porphyrins are ?3.5 and ?3.3, respectively, leading us to the estimation that the mean nitrogen isotopic composition of photoautotrophic cell was around +1 during the formation of Bonarelli black shale. This value is suggestive of N2-fixation a dominant process for these photoautotrophs when assimilating nitrogen. Furthermore, Ni-chelated C32 DPEP, derived mainly from chlorophyll a was the highest concentration. Based on these evidence, we conclude that diazotrophic cyanobacteria were major primary producers during that time. The cyanobacteria may be key photoautotrophs during the formation of black shale type sediments intermittently observed throughout the later half of the Earth's history, and hence may have played a crucial role in the evolution of geochemical cycles

    Amino acid compositions in heated carbonaceous chondrites and their compound-specific nitrogen isotopic ratios

    Get PDF
    第6回極域科学シンポジウム[OA] 南極隕石11月16日(月) 国立国語研究所 2階 講

    Reconstruction of the biogeochemistry and ecology of photoautotrophs based on the nitrogen and carbon isotopic compositions of vanadyl porphyrins from Miocene siliceous sediments

    Get PDF
    We determined both the nitrogen and carbon isotopic compositions of various vanadyl alkylporphyrins isolated from siliceous marine sediments of the Onnagawa Formation (middle Miocene, northeastern Japan) to investigate the biogeochemistry and ecology of photoautotrophs living in the paleo-ocean. The distinctive isotopic signals support the interpretations of previous works that the origin of 17-nor-deoxophylloerythroetioporphyrin (DPEP) is chlorophylls-<i>c</i><sub>1-3</sub>, whereas 8-nor-DPEP may have originated from chlorophylls-<i>a</i><sub>2</sub> or <i>b</i><sub>2</sub> or bacteriochlorophyll-<i>a</i>. Although DPEP and cycloheptanoDPEP are presumably derived from common precursory pigments, their isotopic compositions differed in the present study, suggesting that the latter represents a specific population within the photoautotrophic community. The average δ<sup>15</sup>N value for the entire photoautotrophic community is estimated to be –2 to +1‰ from the δ<sup>15</sup>N values of DPEP (–6.9 to –3.6‰; <i>n</i>=7), considering that the empirical isotopic relationships that the tetrapyrrole nuclei of chloropigments are depleted in <sup>15</sup>N by ~4.8‰ and enriched in <sup>13</sup>C by ~1.8‰ relative to the whole cells. This finding suggests that nitrogen utilized in the primary production was supplied mainly through N<sub>2</sub>-fixation by diazotrophic cyanobacteria. Based on the δ<sup>13</sup>C values of DPEP (–17.9 to –15.6‰; <i>n</i>=7), we estimated isotopic fractionation associated with photosynthetic carbon fixation to be 8–14‰. This range suggests the importance of β-carboxylation and/or active transport of the carbon substrate, indicating in turn the substantial contribution of diazotrophic cyanobacteria to primary production. Based on the δ<sup>15</sup>N values of 17-nor-DPEP (–7.4 to –2.4‰ <i>n</i>=7), the δ<sup>15</sup>N range of chlorophylls-<i>c</i>-producing algae was estimated to be –3 to +3‰. This relative depletion in sup>15</sup>N suggests that these algae mainly utilized nitrogen regenerated from diazotrophic cyanobacteria. Given that diatoms are likely to have constituted the chlorophylls-<i>c</i>-producing algae within the biogenic-silica-rich Onnagawa Formation, cyanobacteria-hosting diatoms may have been important contributors to primary production

    The importance of diazotrophic cyanobacteria as primary producers during Cretaceous Oceanic Anoxic Event 2

    Get PDF
    In Livello Bonarelli black shale deposited during Cretaceous Oceanic Anoxic Event 2 (OAE-2, ca.&nbsp;94 Ma), nitrogen isotopic compositions of bulk sediments are mostly in a narrow range from &ndash;2.7 to &ndash;0.7&permil;. We also determined molecular distribution and nitrogen isotopic compositions of geoporphyrins extracted from the black shale. The nitrogen isotopic compositions of C<sub>32</sub> Ni deoxophylloerythroetioporphyrin (DPEP) and total Ni porphyrins are &ndash;3.5 and &ndash;3.3&permil;, respectively, leading us to the estimation that the mean nitrogen isotopic composition of photoautotrophic cells were around +1&permil; during the formation of Bonarelli black shale. This value is suggestive of N<sub>2</sub>-fixation, a dominant process for these photoautotrophs when assimilating nitrogen. Furthermore, Ni-chelated C<sub>32</sub> DPEP, derived mainly from chlorophyll <i>a</i> had the highest concentration. Based on this evidence, we conclude that diazotrophic cyanobacteria were major primary producers during that time. Cyanobacteria may be key photoautotrophs during the formation of black shale type sediments intermittently observed throughout the later half of the Earth&apos;s history, and hence may have played a crucial role in the evolution of geochemical cycles even in the later half of the Earth&apos;s history

    The past : a compass for future earth

    Get PDF
    Antarctic sea ice impacts on the ocean-atmosphere heat and gas fluxes, the formation of deep and intermediate waters, the nutrient distribution and primary productivity, the so-called &#8216;biological carbon pump&#8217;, one of the most active in the global ocean. In this study, we explore the link between sea ice dynamic, biological production and nutrient cycling during the late Holocene (the last 2,000 yrs) in the Adélie Basin, East Antarctica, from the well-dated sediments of the Ocean Drilling Program (ODP) Site U1357. This archive, composed from ~32 meters of seasonal to annual laminated diatomaceous sequences, allows reconstructions at an unprecedented time resolution (5-10 yrs). Our study combines records of diatom census counts and diatom-specific biomarkers (a ratio (D/T) of di- and tri-unsaturated Highly Branched Isoprenoid lipids (HBI)) as indicators of sea ice and biological production changes, XRF data as markers for terrigenous inputs and bulk nitrogen isotopes (d15N) and d15N on chlorins as proxies for reconstructing nitrogen cycle. The diatom and HBI records reveal five distinct periods. From 0 to 350 yrs AD, decreasing occurrences of sea ice-related diatom species (e.g. Fragilariopsis curta + F. cylindrus) together with low D/T values and increasing open ocean diatom species (large centrics, Chaetoceros Resting Spores (CRS)) document a progressive decline of sea ice presence during the year (>9 months per year) with spring melting occurring earlier in the year and autumn sea ice formation appearing later. In contrast, between 350 and 750 yrs AD, high production of open ocean diatom species and low low D/T values and sea ice related species indicate a short duration of sea ice cover (~10 months per year) is illustrated by a pronounced increase of sea ice-associated diatom species and high D/T values. Between ~1400 and 1850 yrs AD, seasonal sea ice strongly declines (<~7 months per year) as a result of early spring melting (increasing CRS production) and late autumn waxing (high occurrences of Thalassiosira antarctica). Longer growing seasons promoted a substantial development of phytoplankton communities (especially large centric diatoms) that conducted to lower D/T values. Consistent with diatom and HBI reconstructions, XRF data show higher Fe/Al and Zr/Al ratios values during inferred warmer periods and lower ratio values during inferred cooler and icier periods, thus supporting a strong impact of the sea ice seasonal cycle on glacial runoffs. The link between sea ice conditions, biological production and nutrient cycling is still being explored and we will discuss its relationship by combining all the cited records cited above with the d15N records that we are currently generated. Based on our results, we find that sea ice dynamic and associated diatom production in the Adélie Basin revealed an opposite climatic trend than that identified in the Northern Hemisphere for the last 2000 years. The 'Little Ice Age' (1400-1850 yrs AD) or the 'Dark Ages' (400-750 yrs AD) corresponded to warmer climate conditions in the Adélie Basin, while the 'Roman Warm Period' (0-350 yrs AD) or the 'Medieval Warm Period' (900-1200 yrs AD) were associated to colder conditions. We therefore emphasize that Northern and Southern Hemisphere climate evolved in anti-phase seesaw pattern during the late Holocene

    Diazotrophy drives primary production in the organic-rich shales deposited under a stratified environment during the messinian salinity crisis (Vena Del Gesso, Italy)

    Get PDF
    Density stratification between freshwater and brine is periodically formed during massive evaporation events, which often associates deposition of organic-rich sediments. Here, we investigated phototrophic communities and nitrogen cycle during the deposition of two organic-rich shale beds of gypsum\u2013shale alternation, representing the initial stage of the Messinian salinity crisis (Vena del Gesso, Northern Apennines, Italy). The structural distributions and the carbon and nitrogen isotopic compositions of geoporphyrins show a common pattern in the two shales, indicating the predominance of a particular phototrophic community under freshwater\u2013brine stratified conditions. The 3c6\u2030 difference in \u3b413C of total organic carbon between PLG 4 and 5 shales was associated with similar shift in \u3b413C of the porphyrins derived from chlorophyll c, suggesting that the eukaryotic algae producing chlorophyll c were the major constituent of the phototrophic community. Importantly, these porphyrins show \u3b415N values (-7.6\u2013-4.7\u2030) indicative of N2-fixation. We suggest that nitrate-depletion in the photic zone induced the predominance of diazotrophic cyanobacteria, which supplied new nitrogen for the chlorophyll c-producing eukaryotic algae. The large difference in the \u3b413C values of porphyrins and total organic carbon between PLG 4 and 5 shales are interpreted to reflect the depth of the chemocline, which fluctuates in response to changes in the regional evaporation\u2013precipitation balance. Such variation in the chemocline depth may have dynamically changed the mode of the nitrogen cycle (i.e., nitrification\u2013denitrification\u2013N2-fixation coupling vs. phototrophic assimilation of ammonium) in the density-stratified marginal basins during the Messinian salinity crisis

    Isotopic insights into the early Medieval (600-1100 CE) diet in the Luistari cemetery at Eura, Finland

    Get PDF
    In this article, we present the results of an isotopic study of diet for the early medieval (Merovingian, Viking, Early Christian) humans buried in the unique Luistari cemetery at Eura (ca. 600-1400 CE), southwestern Finland, the largest cemetery of the region. Isotope analysis was conducted on 37 humans for dentine and bone collagen (delta C-13, delta N-15, and delta S-34), and five of them were also studied using compound-specific nitrogen isotope analysis. Dental enamel and/or bone carbonate delta C-13 values were studied from altogether 65 humans, five cattle, and five sheep/goats. The bone and dentine collagen and carbonate data show that throughout the centuries, freshwater fish was a stable part of the diet for the population. Our results do not show systematic dietary differences between estimated males and females, but differences can be large on the individual level. We also discovered a possible temporal change in the enamel carbonate delta C-13 values that could be related to the increasing role of carbohydrates (e.g., crops) in the diet. Luistari burials are well comparable to contemporary Swedish Viking trading communities like Birka in their higher protein intake. But contrary to the wider Viking network, they do not show the same marine signal.Peer reviewe

    Developing Ultra Small-Scale Radiocarbon Sample Measurement at the University of Tokyo

    Get PDF
    From the 20th International Radiocarbon Conference held in Kona, Hawaii, USA, May 31-June 3, 2009.We have developed accelerator mass spectrometry (AMS) measurement techniques for ultra small-size samples ranging from 0.01 to 0.10 mg C with a new type of MC-SNICS ion source system. We can generate 4 times higher ion beam current intensity for ultra-small samples by optimization of graphite position in the target holder with the new ionizer geometry. CO2 gas graphitized in the newly developed vacuum line is pressed to a depth of 1.5 mm from the front of the target holder. This is much deeper than the previous position at 0.35 mm depth. We measured 12C4+ beam currents generated by small standards and ion beam currents (15-30 mu-A) from the targets in optimized position, lasting 20 min for 0.01 mg C and 65 min for 0.10 mg C. We observed that the measured 14C/12C ratios are unaffected by the difference of ion beam currents ranging from 5 to 30 mu-A, enabling measurement of ultra-small samples with high precision. Examination of the background samples revealed 1.1 mu-g of modern and 1 mu-g of dead carbon contaminations during target graphite preparation. We make corrections for the contamination from both the modern and background components. Reduction of the contamination is necessary for conducting more accurate measurement.The Radiocarbon archives are made available by Radiocarbon and the University of Arizona Libraries. Contact [email protected] for further information.Migrated from OJS platform February 202

    Biomarker records and mineral compositions of the Messinian halite and K–Mg salts from Sicily

    Get PDF
    The evaporites of the Realmonte salt mine (Sicily, Italy) are important archives recording the most extreme conditions of the Messinian Salinity Crisis (MSC). However, geochemical approach on these evaporitic sequences is scarce and little is known on the response of the biological community to drastically elevating salinity. In the present work, we investigated the depositional environments and the biological community of the shale–anhydrite–halite triplets and the K–Mg salt layer deposited during the peak of the MSC. Both hopanes and steranes are detected in the shale–anhydrite–halite triplets, suggesting the presence of eukaryotes and bacteria throughout their deposition. The K–Mg salt layer is composed of primary halites, diagenetic leonite, and primary and/or secondary kainite, which are interpreted to have precipitated from density-stratified water column with the halite-precipitating brine at the surface and the brineprecipitating K–Mg salts at the bottom. The presence of hopanes and a trace amount of steranes implicates that eukaryotes and bacteria were able to survive in the surface halite-precipitating brine even during the most extreme condition of the MSC.This work was performed with the support of Japan Society for the Promotion of Science (JSPS) Research Fellowship (16 J07844) to YI and JAMSTEC President Fund to NO
    corecore