163 research outputs found

    Time-dependent diffusion coefficient of proton in polymer electrolyte membrane

    Get PDF
    We investigated the time-dependent self-diffusion coefficients of water, D(T eff), in polymer electrolyte membranes at 278 K. TheD(T eff) was measured from T eff=0.7 to 100 ms by field gradient NMR techniques. The results showed that the self-diffusion coefficients of water were dependent on T eff less than 2 ms due to restricted diffusion, and were constant beyond 3 ms. The tortuosity and surface-to-volume ratio related to water diffusion were also estimated from D(T eff). The obtained values revealed the existence of large-scale restricted geometry compared with well-known nanometer-sized domain in polymer electrolyte membranes

    Phase transformation of mesoporous calcium carbonate by mechanical stirring

    Get PDF
    We report a simple strategy to synthesize vaterite/calcite mesoporous calcium carbonate through collisions and organization of colloidal particles accelerated by mechanical stirring. Mechanically stirring the precursor colloidal dispersion can control the calcium carbonate polymorphs

    Possible Relationship Between MYBL1 Alterations and Specific Primary Sites in Adenoid Cystic Carcinoma: A Clinicopathological and Molecular Study of 36 Cases

    Get PDF
    [Background] Adenoid cystic carcinoma (ACC) is a relatively rare malignant neoplasm that occurs in salivary glands and various other organs. Recent studies have revealed that a significant proportion of ACCs harbor gene alterations involving MYB or MYBL1 (mostly fusions with NFIB) in a mutually-exclusive manner. However, its clinical significance remains to be well-established. [Methods] We investigated clinicopathological and molecular features of 36 ACCs with special emphasis on the significance of MYBL1 alterations. Reverse-transcription polymerase-chain reaction (RT-PCR) and fluorescence in-situ hybridization (FISH) were performed to detect MYB/MYBL1-NFIB fusions and MYBL1 alterations, respectively. Immunohistochemistry was performed to evaluate MYB expression in the tumors. The results were correlated with clinicopathological profiles of the patients. [Results] RT-PCR revealed MYB-NFIB and MYBL1-NFIB fusions in 10 (27.8%) and 7 (19.4%) ACCs, respectively, in a mutually-exclusive manner. FISH for MYBL1 rearrangements was successfully performed in 11 cases, and the results were concordant with those of RT-PCR. Immunohistochemically, strong MYB expression was observed in 23 (63.9%) tumors, none of which showed MYBL1 alterations. Clinicopathologically, a trend of a better disease-specific survival was noted in patients with MYBL1 alterations than in those with MYB-NFIB fusions and/or strong MYB expression; however, the difference was not significant. Interestingly, we found tumors with MYBL1 alterations significantly frequently occurred in the mandibular regions (P = 0.012). Moreover, literature review revealed a similar tendency in a previous study. [Conclusion] Our results suggest that there are some biological or etiological differences between ACCs with MYB and MYBL1 alterations. Moreover, the frequent occurrence of MYBL1-associated ACC in the mandibular regions suggests that MYB immunohistochemistry is less useful in diagnosing ACCs arising in these regions. Further studies are warranted to verify our findings

    The roles of stress-activated Sty1 and Gcn2 kinases and proto-oncoprotein homologue Int6/eIF3e in responses to endogenous oxidative stress during histidine starvation

    Get PDF
    In fission yeast, Sty1 and Gcn2 are important protein kinases regulating gene expression in response to amino acid starvation. The translation factor subunit eIF3e/Int6 promotes the Sty1-dependent response by increasing the abundance of Atf1, a transcription factor targeted by Sty1. While Gcn2 promotes expression of amino acid biosynthesis enzymes, the mechanism and function for Sty1 activation and Int6/eIF3e involvement during this nutrient stress is not understood. Here we show that mutants lacking sty1+ or gcn2+ display reduced viabilities during histidine depletion stress in a manner suppressible by the antioxidant, N-acetyl cysteine, suggesting that these protein kinases function to alleviate endogenous oxidative damage generated during nutrient starvation. Int6/eIF3e also promotes cell viability by a mechanism involving stimulation of the Sty1 response to oxidative damage. In further support of these observations, microarray data suggests that, during histidine starvation, int6Δ increases the duration of Sty1-activated gene expression linked to oxidative stress due to the initial attenuation of Sty1-dependent transcription. Moreover, loss of gcn2 induces the expression of a new set of genes not activated in wild-type cells starved for histidine. These genes encode heatshock proteins, redox enzymes and proteins involved in mitochondrial maintenance, in agreement with the idea that oxidative stress is imposed onto gcn2Δ cells. Furthermore, the early Sty1 activation promotes a rapid Gcn2 activation on histidine starvation. These results suggest that Gcn2, Sty1, and Int6/eIF3e are functionally integrated and cooperate to respond to oxidative stress that is generated during histidine starvation

    The positive side of psychopathy: Emotional detachment in psychopathy and rational decision-making in the ultimatum game

    Get PDF
    An emotional deficit in individuals with psychopathy has been regarded as a potential factor in the disinhibition of selfish behaviors, which can be an impediment to a successful life in human society. However, recent studies in the field of economics have made clear that emotional function is associated with irrational decision-making. In the present study, to test whether psychopathy may have a positive aspect in a social setting, we examined the decision-making of college students with high and low tendencies for psychopathy in the ultimatum game, which illustrates conflict between fairness and economic utility. We also investigated electrodermal responses to fair and unfair offers for each group. Compared to low psychopathic controls, individuals with a high tendency toward psychopathy more often choose economic utility by accepting unfair offers. Whereas controls more often exhibited an electrodermal response to unfair offers compared to fair offers, high psychopathic individuals did not show a similar difference between the types of offer. The results suggest that the affective deficit of psychopathy might be associated with insensitivity to unfairness and may contribute to a rational decision to accept unfair offers. Hence, psychopathy can be rational in some social situations

    Development of a Multifunctional Lightweight Membrane with a High Specific Power Generation Capacity

    Get PDF
    As a lighter power generation system, Japan Aerospace Exploration Agency (JAXA) and Sakase Adtech Corp. are developing a demonstrator component named “Harvesting Energy with Lightweight Integrated Origami Structure” (HELIOS), which is a deployable lightweight membrane structure. HELIOS has solar arrays on its surface and demonstrates the technology which enables higher specific power generation capacity compared to the conventional solar array panels. The membrane also has communication antennas, showing the potency of lightweight membrane’s multifunctionality such as large data transmitting by 5G antennas and high-resolution observation by interferometer antennas. This paper presents the component’s concept and design, and the expected achievements

    Phosphorylated Smad2 in Advanced Stage Gastric Carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Transforming growth factor β (TGFβ) receptor signaling is closely associated with the invasion ability of gastric cancer cells. Although Smad signal is a critical integrator of TGFβ receptor signaling transduction systems, not much is known about the role of Smad2 expression in gastric carcinoma. The aim of the current study is to clarify the role of phosphorylated Smad2 (p-Smad2) in gastric adenocarcinomas at advanced stages.</p> <p>Methods</p> <p>Immunohistochemical staining with anti-p-Smad2 was performed on paraffin-embedded specimens from 135 patients with advanced gastric adenocarcinomas. We also evaluated the relationship between the expression levels of p-Smad2 and clinicopathologic characteristics of patients with gastric adenocarcinomas.</p> <p>Results</p> <p>The p-Smad2 expression level was high in 63 (47%) of 135 gastric carcinomas. The p-Smad2 expression level was significantly higher in diffuse type carcinoma (p = 0.007), tumours with peritoneal metastasis (p = 0.017), and tumours with lymph node metastasis (p = 0.047). The prognosis for p-Smad2-high patients was significantly (p = 0.035, log-rank) poorer than that of p-Smad2-low patients, while a multivariate analysis revealed that p-Smad2 expression was not an independence prognostic factor.</p> <p>Conclusion</p> <p>The expression of p-Smad2 is associated with malignant phenotype and poor prognosis in patients with advanced gastric carcinoma.</p

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target
    corecore