557 research outputs found

    Systematic Two-Hybrid and Comparative Proteomic Analyses Reveal Novel Yeast Pre-mRNA Splicing Factors Connected to Prp19

    Get PDF
    Prp19 is the founding member of the NineTeen Complex, or NTC, which is a spliceosomal subcomplex essential for spliceosome activation. To define Prp19 connectivity and dynamic protein interactions within the spliceosome, we systematically queried the Saccharomyces cerevisiae proteome for Prp19 WD40 domain interaction partners by two-hybrid analysis. We report that in addition to S. cerevisiae Cwc2, the splicing factor Prp17 binds directly to the Prp19 WD40 domain in a 1∶1 ratio. Prp17 binds simultaneously with Cwc2 indicating that it is part of the core NTC complex. We also find that the previously uncharacterized protein Urn1 (Dre4 in Schizosaccharomyces pombe) directly interacts with Prp19, and that Dre4 is conditionally required for pre-mRNA splicing in S. pombe. S. pombe Dre4 and S. cerevisiae Urn1 co-purify U2, U5, and U6 snRNAs and multiple splicing factors, and dre4Δ and urn1Δ strains display numerous negative genetic interactions with known splicing mutants. The S. pombe Prp19-containing Dre4 complex co-purifies three previously uncharacterized proteins that participate in pre-mRNA splicing, likely before spliceosome activation. Our multi-faceted approach has revealed new low abundance splicing factors connected to NTC function, provides evidence for distinct Prp19 containing complexes, and underscores the role of the Prp19 WD40 domain as a splicing scaffold

    A Natural Framework for Solar and 17 keV Neutrinos

    Full text link
    Motivated by recent experimental claims for the existence of a 17 keV neutrino and by the solar neutrino problem, we construct a class of models which contain in their low-energy spectrum a single light sterile neutrino and one or more Nambu-Goldstone bosons. In these models the required pattern of breaking of lepton-number symmetry takes place near the electroweak scale and all mass heirarchies are technically natural. The models are compatible with all cosmological and astrophysical constraints, and can solve the solar neutrino problem via either the MSW effect or vacuum oscillations. The deficit in atmospheric muon neutrinos seen in the Kamiokande and IMB detectors can also be explained in these models.Comment: 23 page

    HCV IRES manipulates the ribosome to promote the switch from translation initiation to elongation.

    Get PDF
    The internal ribosome entry site (IRES) of the hepatitis C virus (HCV) drives noncanonical initiation of protein synthesis necessary for viral replication. Functional studies of the HCV IRES have focused on 80S ribosome formation but have not explored its role after the 80S ribosome is poised at the start codon. Here, we report that mutations of an IRES domain that docks in the 40S subunit's decoding groove cause only a local perturbation in IRES structure and result in conformational changes in the IRES-rabbit 40S subunit complex. Functionally, the mutations decrease IRES activity by inhibiting the first ribosomal translocation event, and modeling results suggest that this effect occurs through an interaction with a single ribosomal protein. The ability of the HCV IRES to manipulate the ribosome provides insight into how the ribosome's structure and function can be altered by bound RNAs, including those derived from cellular invaders

    Two Prp19-Like U-Box Proteins in the MOS4-Associated Complex Play Redundant Roles in Plant Innate Immunity

    Get PDF
    Plant Resistance (R) proteins play an integral role in defense against pathogen infection. A unique gain-of-function mutation in the R gene SNC1, snc1, results in constitutive activation of plant immune pathways and enhanced resistance against pathogen infection. We previously found that mutations in MOS4 suppress the autoimmune phenotypes of snc1, and that MOS4 is part of a nuclear complex called the MOS4-Associated Complex (MAC) along with the transcription factor AtCDC5 and the WD-40 protein PRL1. Here we report the immuno-affinity purification of the MAC using HA-tagged MOS4 followed by protein sequence analysis by mass spectrometry. A total of 24 MAC proteins were identified, 19 of which have predicted roles in RNA processing based on their homology to proteins in the Prp19-Complex, an evolutionarily conserved spliceosome-associated complex containing homologs of MOS4, AtCDC5, and PRL1. Among these were two highly similar U-box proteins with homology to the yeast and human E3 ubiquitin ligase Prp19, which we named MAC3A and MAC3B. MAC3B was recently shown to exhibit E3 ligase activity in vitro. Through reverse genetics analysis we show that MAC3A and MAC3B are functionally redundant and are required for basal and R protein–mediated resistance in Arabidopsis. Like mos4-1 and Atcdc5-1, mac3a mac3b suppresses snc1-mediated autoimmunity. MAC3 localizes to the nucleus and interacts with AtCDC5 in planta. Our results suggest that MAC3A and MAC3B are members of the MAC that function redundantly in the regulation of plant innate immunity

    Pre-M Phase-promoting Factor Associates with Annulate Lamellae in Xenopus Oocytes and Egg Extracts

    Get PDF
    We have used complementary biochemical and in vivo approaches to study the compartmentalization of M phase-promoting factor (MPF) in prophase Xenopus eggs and oocytes. We first examined the distribution of MPF (Cdc2/CyclinB2) and membranous organelles in high-speed extracts of Xenopus eggs made during mitotic prophase. These extracts were found to lack mitochondria, Golgi membranes, and most endoplasmic reticulum (ER) but to contain the bulk of the pre-MPF pool. This pre-MPF could be pelleted by further centrifugation along with components necessary to activate it. On activation, Cdc2/CyclinB2 moved into the soluble fraction. Electron microscopy and Western blot analysis showed that the pre-MPF pellet contained a specific ER subdomain comprising "annulate lamellae" (AL): stacked ER membranes highly enriched in nuclear pores. Colocalization of pre-MPF with AL was demonstrated by anti-CyclinB2 immunofluorescence in prophase oocytes, in which AL are positioned close to the vegetal surface. Green fluorescent protein-CyclinB2 expressed in oocytes also localized at AL. These data suggest that inactive MPF associates with nuclear envelope components just before activation. This association may explain why nuclei and centrosomes stimulate MPF activation and provide a mechanism for targeting of MPF to some of its key substrates

    Planck scale effects in neutrino physics

    Full text link
    We study the phenomenology and cosmology of the Majoron (flavon) models of three active and one inert neutrino paying special attention to the possible (almost) conserved generalization of the Zeldovich-Konopinski-Mahmoud lepton charge. Using Planck scale physics effects which provide the breaking of the lepton charge, we show how in this picture one can incorporate the solutions to some of the central issues in neutrino physics such as the solar and atmospheric neutrino puzzles, dark matter and a 17 keV neutrino. These gravitational effects induce tiny Majorana mass terms for neutrinos and considerable masses for flavons. The cosmological demand for the sufficiently fast decay of flavons implies a lower limit on the electron neutrino mass in the range of 0.1-1 eV.Comment: 24 pages, 1 figure (not included but available upon request), LaTex, IC/92/196, SISSA-140/92/EP, LMU-09/9

    Global and local controlson continental margin stratigraphy

    Get PDF
    Integrated Ocean Drilling Program (IODP) Expedition 317 was devoted to understanding the relative importance of global sea level (eustasy) versus local tectonic and sedimentary processes in controlling continental margin sedimentary cycles. The expedition recovered sediments from the Eocene to recent period, with a particular focus on the sequence stratigraphy of the late Miocene to recent, when global sea level change was dominated by glacioeustasy. Drilling in the Canterbury Basin, on the eastern margin of the South Island of New Zealand, takes advantage of high rates of Neogene sediment supply, which preserves a high-frequency (0.1–0.5 m.y.) record of depositional cyclicity. The Canterbury Basin provides an opportunity to study the complex interactions between processes responsible for the preserved stratigraphic record of sequences because of the proximity of an uplifting mountain chain, the Southern Alps, and strong ocean currents. Currents have locally built large, elongate sediment drifts within the prograding Neogene section. Expedition 317 did not drill into one of these elongate drifts, but currents are inferred to have strongly influenced deposition across the basin, including in locations lacking prominent mounded drifts. Upper Miocene to recent sedimentary sequences were cored in a transect of three sites on the continental shelf (landward to basinward, Sites U1353, U1354, and U1351) and one on the continental slope (Site U1352). The transect provides a stratigraphic record of depositional cycles across the shallow-water environment most directly affected by relative sea level change. Lithologic boundaries, provisionally correlative with seismic sequence boundaries, have been identified in cores from each site and provide insights into the origins of seismically resolvable sequences. This record will be used to estimate the timing and amplitude of global sea level change and to document the sedimentary processes that operate during sequence formation. Sites U1353 and U1354 provide significant, double-cored, high-recovery sections through the Holocene and late Quaternary for high-resolution study of recent glacial cycles in a continental shelf setting. Continental slope Site U1352 represents a complete section from modern slope terrigenous sediment to hard Eocene limestone, with all the associated lithologic, biostratigraphic, physical, geochemical, and microbiological transitions. The site also provides a record of ocean circulation and fronts during the last ~35 m.y. The early Oligocene (~30 Ma) Marshall Paraconformity was the deepest drilling target of Expedition 317 and is hypothesized to represent intensified current erosion or nondeposition associated with the initiation of thermohaline circulation following the separation of Australian and Antarctica. Expedition 317 set a number of scientific ocean drilling records: (1) deepest hole drilled in a single expedition and second deepest hole in the history of scientific ocean drilling (Hole U1352C, 1927 m); (2) deepest hole and second deepest hole drilled by the R/V JOIDES Resolution on a continental shelf (Hole U1351B, 1030 m; Hole U1353B, 614 m); (3) shallowest water depth for a site drilled by the JOIDES Resolution for scientific purposes (Site U1353, 84.7 m water depth); and (4) deepest sample taken by scientific ocean drilling for microbiological studies (1925 m, Site U1352). Expedition 317 supplements previous drilling of sedimentary sequences for sequence stratigraphic and sea level objectives, particularly drilling on the New Jersey margin (Ocean Drilling Program [ODP] Legs 150, 150X, 174A, and 174AX and IODP Expedition 313) and in the Bahamas (ODP Leg 166), but includes an expanded Pliocene section. Completion of at least one transect across a geographically and tectonically distinct siliciclastic margin was the necessary next step in deciphering continental margin stratigraphy. Expedition 317 also complements ODP Leg 181, which focused on drift development in more distal parts of the Eastern New Zealand Oceanic Sedimentary System (ENZOSS).Integrated Ocean Drilling Program Management InternationalPublished2.2. Laboratorio di paleomagnetismorestricte

    The p250GAP Gene Is Associated with Risk for Schizophrenia and Schizotypal Personality Traits

    Get PDF
    BACKGROUND: Hypofunction of the glutamate N-Methyl-d-aspartate (NMDA) receptor has been implicated in the pathophysiology of schizophrenia. p250GAP is a brain-enriched NMDA receptor-interacting RhoGAP. p250GAP is involved in spine morphology, and spine morphology has been shown to be altered in the post-mortem brains of patients with schizophrenia. Schizotypal personality disorder has a strong familial relationship with schizophrenia. Several susceptibility genes for schizophrenia have been related to schizotypal traits. METHODS: We first investigated the association of eight linkage disequilibrium-tagging single-nucleotide polymorphisms (SNPs) that cover the p250GAP gene with schizophrenia in a Japanese sample of 431 schizophrenia patients and 572 controls. We then investigated the impact of the risk genetic variant in the p250GAP gene on schizotypal personality traits in 180 healthy subjects using the Schizotypal Personality Questionnaire. RESULTS: We found a significant difference in genotype frequency between the patients and the controls in rs2298599 (χ(2) = 17.6, p = 0.00015). The minor A/A genotype frequency of rs2298599 was higher in the patients (18%) than in the controls (9%) (χ(2) = 15.5, p = 0.000083). Moreover, we found that subjects with the rs2298599 risk A/A genotype, compared with G allele carriers, had higher scores of schizotypal traits (F(1,178) = 4.08, p = 0.045), particularly the interpersonal factor (F(1,178) = 5.85, p = 0.017). DISCUSSION: These results suggest that a genetic variation in the p250GAP gene might increase susceptibility not only for schizophrenia but also for schizotypal personality traits. We concluded that the p250GAP gene might be a new candidate gene for susceptibility to schizophrenia

    RNA metabolism is the primary target of formamide in vivo

    Get PDF
    The synthesis, processing and function of coding and non-coding RNA molecules and their interacting proteins has been the focus of a great deal of research that has boosted our understanding of key molecular pathways that underlie higher order events such as cell cycle control, development, innate immune response and the occurrence of genetic diseases. In this study, we have found that formamide preferentially weakens RNA related processes in vivo. Using a non-essential Schizosaccharomyces pombe gene deletion collection, we identify deleted loci that make cells sensitive to formamide. Sensitive deletions are significantly enriched in genes involved in RNA metabolism. Accordingly, we find that previously known temperature-sensitive splicing mutants become lethal in the presence of the drug under permissive temperature. Furthermore, in a wild type background, splicing efficiency is decreased and R-loop formation is increased in the presence of formamide. In addition, we have also isolated 35 formamide-sensitive mutants, many of which display remarkable morphology and cell cycle defects potentially unveiling new players in the regulation of these processes. We conclude that formamide preferentially targets RNA related processes in vivo, probably by relaxing RNA secondary structures and/or RNA-protein interactions, and can be used as an effective tool to characterize these processes
    corecore