48 research outputs found

    Digital Divide and Growth Gap: A Cumulative Relationship

    Get PDF
    IT, growth gap, cumulative relationship

    Joint Optimization for Secure and Reliable Communications in Finite Blocklength Regime

    Full text link
    To realize ultra-reliable low latency communications with high spectral efficiency and security, we investigate a joint optimization problem for downlink communications with multiple users and eavesdroppers in the finite blocklength (FBL) regime. We formulate a multi-objective optimization problem to maximize a sum secrecy rate by developing a secure precoder and to minimize a maximum error probability and information leakage rate. The main challenges arise from the complicated multi-objective problem, non-tractable back-off factors from the FBL assumption, non-convexity and non-smoothness of the secrecy rate, and the intertwined optimization variables. To address these challenges, we adopt an alternating optimization approach by decomposing the problem into two phases: secure precoding design, and maximum error probability and information leakage rate minimization. In the first phase, we obtain a lower bound of the secrecy rate and derive a first-order Karush-Kuhn-Tucker (KKT) condition to identify local optimal solutions with respect to the precoders. Interpreting the condition as a generalized eigenvalue problem, we solve the problem by using a power iteration-based method. In the second phase, we adopt a weighted-sum approach and derive KKT conditions in terms of the error probabilities and leakage rates for given precoders. Simulations validate the proposed algorithm.Comment: 30 pages, 8 figure

    On Recognizing Texts of Arbitrary Shapes with 2D Self-Attention

    Full text link
    Scene text recognition (STR) is the task of recognizing character sequences in natural scenes. While there have been great advances in STR methods, current methods still fail to recognize texts in arbitrary shapes, such as heavily curved or rotated texts, which are abundant in daily life (e.g. restaurant signs, product labels, company logos, etc). This paper introduces a novel architecture to recognizing texts of arbitrary shapes, named Self-Attention Text Recognition Network (SATRN), which is inspired by the Transformer. SATRN utilizes the self-attention mechanism to describe two-dimensional (2D) spatial dependencies of characters in a scene text image. Exploiting the full-graph propagation of self-attention, SATRN can recognize texts with arbitrary arrangements and large inter-character spacing. As a result, SATRN outperforms existing STR models by a large margin of 5.7 pp on average in "irregular text" benchmarks. We provide empirical analyses that illustrate the inner mechanisms and the extent to which the model is applicable (e.g. rotated and multi-line text). We will open-source the code

    Development of Compact and High-efficient Scroll Compressor with Novel Bearing Structure

    Get PDF
    High-Side Shell(HSS) scroll compressors have been widely used for Variable Refrigerant Flow(VRF) system which is a powerful solution for the cooling and heating of commercial buildings. In order to improve the characteristics of the VRF system, a new HSS scroll compressor has been developed with a novel bearing structure. The core elements of the novel bearing structure are an outer-type bearing mounted on an orbiting scroll and a female-type eccentric journal inside of a shaft. The outer-type bush bearing which is made of engineering plastic without a back steel layer has been newly developed. The new HSS scroll compressor employing the novel bearing structure has a compact size, high efficiency, and low noise level compared to a conventional HSS scroll compressor. In order to confirm the advantages of the new HSS scroll compressor, basic tests and theoretical analysis have been performed in this study

    Endoplasmic Reticulum Stress-Induced JNK Activation Is a Critical Event Leading to Mitochondria-Mediated Cell Death Caused by β-Lapachone Treatment

    Get PDF
    β-lapachone (β-lap) is a bioreductive agent that is activated by the two-electron reductase NAD(P)H quinone oxidoreductase 1 (NQO1). Although β-lap has been reported to induce apoptosis in various cancer types in an NQO1-dependent manner, the signaling pathways by which β-lap causes apoptosis are poorly understood.β-lap-induced apoptosis and related molecular signaling pathways in NQO1-negative and NQO1-overexpressing MDA-MB-231 cells were investigated. Pharmacological inhibitors or siRNAs against factors involved in β-lap-induced apoptosis were used to clarify the roles played by such factors in β-lap-activated apoptotic signaling pathways. β-lap leads to clonogenic cell death and apoptosis in an NQO1- dependent manner. Treatment of NQO1-overexpressing MDA-MB-231 cells with β-lap causes rapid disruption of mitochondrial membrane potential, nuclear translocation of AIF and Endo G from mitochondria, and subsequent caspase-independent apoptotic cell death. siRNAs targeting AIF and Endo G effectively attenuate β-lap-induced clonogenic and apoptotic cell death. Moreover, β-lap induces cleavage of Bax, which accumulates in mitochondria, coinciding with the observed changes in mitochondria membrane potential. Pretreatment with Salubrinal (Sal), an endoplasmic reticulum (ER) stress inhibitor, efficiently attenuates JNK activation caused by β-lap, and subsequent mitochondria-mediated cell death. In addition, β-lap-induced generation and mitochondrial translocation of cleaved Bax are efficiently blocked by JNK inhibition.Our results indicate that β-lap triggers induction of endoplasmic reticulum (ER) stress, thereby leading to JNK activation and mitochondria-mediated apoptosis. The signaling pathways that we revealed in this study may significantly contribute to an improvement of NQO1-directed tumor therapies

    25th annual computational neuroscience meeting: CNS-2016

    Get PDF
    The same neuron may play different functional roles in the neural circuits to which it belongs. For example, neurons in the Tritonia pedal ganglia may participate in variable phases of the swim motor rhythms [1]. While such neuronal functional variability is likely to play a major role the delivery of the functionality of neural systems, it is difficult to study it in most nervous systems. We work on the pyloric rhythm network of the crustacean stomatogastric ganglion (STG) [2]. Typically network models of the STG treat neurons of the same functional type as a single model neuron (e.g. PD neurons), assuming the same conductance parameters for these neurons and implying their synchronous firing [3, 4]. However, simultaneous recording of PD neurons shows differences between the timings of spikes of these neurons. This may indicate functional variability of these neurons. Here we modelled separately the two PD neurons of the STG in a multi-neuron model of the pyloric network. Our neuron models comply with known correlations between conductance parameters of ionic currents. Our results reproduce the experimental finding of increasing spike time distance between spikes originating from the two model PD neurons during their synchronised burst phase. The PD neuron with the larger calcium conductance generates its spikes before the other PD neuron. Larger potassium conductance values in the follower neuron imply longer delays between spikes, see Fig. 17.Neuromodulators change the conductance parameters of neurons and maintain the ratios of these parameters [5]. Our results show that such changes may shift the individual contribution of two PD neurons to the PD-phase of the pyloric rhythm altering their functionality within this rhythm. Our work paves the way towards an accessible experimental and computational framework for the analysis of the mechanisms and impact of functional variability of neurons within the neural circuits to which they belong

    Secure Internet-of-Things Communications: Joint Precoding and Power Control

    No full text
    In this paper, we consider a downlink internet-of-things (IoT) multiple-input multiple-output (MIMO) network wherein an access point (AP), multiple IoT users, and a single eavesdropper coexist. The eavesdropper attempts to wiretap confidential messages of the IoT users. In the considered system, we solve a sum secrecy rate maximization problem in the finite blocklength (FBL) regime. Due to the FBL, the secrecy rate has a back-off factor with respect to blocklength, decoding error probability, and information leakage, which makes the problem more challenging. The main challenges are: i) the problem is not tractable because of the back-off factor, ii) an objective function is inherently non-convex, and iii) information leakage by the eavesdropper needs to be considered. To address these difficulties, we first obtain a lower bound of the secrecy rate and transform the problem into a product of Rayleigh quotients form. Then, we derive a first-order Karush-Kuhn-Tucker (KKT) condition to find a local optimal solution and interpret the condition as a generalized eigenvalue problem. Consequently, we develop a low-complexity algorithm by adopting a generalized power iteration-based (GPI) method. Via simulations, we validate the secrecy rate performance of the proposed method for the short-packet IoT communication systems
    corecore