589 research outputs found

    High Power CMUTs: Design and experimental verification

    Get PDF
    Cataloged from PDF version of article.Capacitive micromachined ultrasonic transducers (CMUTs) have great potential to compete with piezoelectric transducers in high-power applications. As the output pressures increase, nonlinearity of CMUT must be reconsidered and optimization is required to reduce harmonic distortions. In this paper, we describe a design approach in which uncollapsed CMUT array elements are sized so as to operate at the maximum radiation impedance and have gap heights such that the generated electrostatic force can sustain a plate displacement with full swing at the given drive amplitude. The proposed design enables high output pressures and low harmonic distortions at the output. An equivalent circuit model of the array is used that accurately simulates the uncollapsed mode of operation. The model facilities the design of CMUT parameters for high-pressure output, without the intensive need for computationally involved FEM tools. The optimized design requires a relatively thick plate compared with a conventional CMUT plate. Thus, we used a silicon wafer as the CMUT plate. The fabrication process involves an anodic bonding process for bonding the silicon plate with the glass substrate. To eliminate the bias voltage, which may cause charging problems, the CMUT array is driven with large continuous wave signals at half of the resonant frequency. The fabricated arrays are tested in an oil tank by applying a 125-V peak 5-cycle burst sinusoidal signal at 1.44 MHz. The applied voltage is increased until the plate is about to touch the bottom electrode to get the maximum peak displacement. The observed pressure is about 1.8 MPa with −28 dBc second harmonic at the surface of the array

    The measurement of membranous urethral length using transperineal ultrasound prior to radical prostatectomy

    Get PDF
    Objective: To compare preoperative membranous urethral length (MUL) measurements using magnetic resonance imaging (MRI) with two-dimensional transperineal ultrasound imaging (TPUS) in two supine positions on two separate days in men prior to radical prostatectomy. Materials and methods: MUL was prospectively measured in 18 male volunteers using MRI and on two separate occasions in two different patient positions using TPUS; the patient supine with the knees extended (Supine) and supine with the knees flexed to 70 degrees (Supine KF). Agreement between TPUS and MRI measurements of MUL was assessed using Bland-Altman method comparison techniques and a two-way mixed-effects single measures intraclass correlation (ICC). Test-retest reliability was assessed using a two-way random effects single measures ICC. Results: The mean difference in MUL measurements between MRI and i) TPUS Supine was -0.8 mm (95% limits of agreement (LOA): -3.2, 1.7) and ii) TPUS Supine KF was -0.8mm (95% LOA: -3.5, 1.9). ICC indicated a point estimate of excellent agreement between MRI and TPUS Supine ICC 0.93 (95% CI: 0.76, 0.98) and TPUS Supine KF ICC 0.91 (95 0 /0CI 0.79, 0.97). There was excellent agreement between TPUS Supine and TPUS Supine KF (ICC 0.98, 95% CI: 0.96, 0.99) with a mean difference of 0.3mm (95% LOA: -1.2 to 1.3mm). Conclusions: Preoperative MUL can be reliably measured using TPUS and demonstrates excellent agreement with MRI measurements of MUL. TPUS provides clinicians with an accessible non-invasive alternative to MRI for the measurement of MUL that can be used in outpatient urological settings and for patients where MRI is contraindicated

    Scaling and super-universality in the coarsening dynamics of the 3d random field Ising model

    Full text link
    We study the coarsening dynamics of the three-dimensional random field Ising model using Monte Carlo numerical simulations. We test the dynamic scaling and super-scaling properties of global and local two-time observables. We treat in parallel the three-dimensional Edward-Anderson spin-glass and we recall results on Lennard-Jones mixtures and colloidal suspensions to highlight the common and different out of equilibrium properties of these glassy systems.Comment: 18 pages, 21 figure

    An environmental assessment of risk in achieving good environmental status to support regional prioritisation of management in Europe

    Get PDF
    The Marine Strategy Framework Directive (MSFD) aims to achieve Good Environmental Status (GES) in Europe's Seas. The requirement for regional sea authorities to identify and prioritise issues for management has meant that standardized methods to assess the current level of departure from GES are needed. The methodology presented here provides a means by which existing information describing the status of ecosystem components of a regional sea can be used to determine the effort required to achieve GES. A risk assessment framework was developed to score departure from GES for 10 out of the 11 GES descriptors, based on proposed definitions of 'good' status, and current knowledge of environmental status in each of the four regional seas (North-East Atlantic, Mediterranean Sea, Baltic Sea and Black Sea). This provides an approach for regional evaluation of environmental issues and national prioritisation of conservation objectives. Departure from GES definitions is described as 'high', 'moderate' or low' and the implications for management options and national policy decisions are discussed. While the criteria used in this study were developed specifically for application toward MSFD objectives, with modification the approach could be applied to evaluate other high-level social, economic or environmental objectives. Crown Copyright (C) 2012 Published by Elsevier Ltd. All rights reserved

    Optical properties of hydrogenated amorphous silicon

    Get PDF
    A detailed study of the optical properties of sputtered hydrogenated amorphous silicon films with varying hydrogen concentration is presented here. The energy dependence of the absorption coefficient is looked into, in detail, from a point of view of understanding the well known Tauc rule and the alternate relations being proposed in recent years. Spectroscopic and band‐structural models like Wemple-Didomenico and Penn are then utilized to analyze the optical parameters near the band‐gap region of the wavelength spectra. Extensive comparisons of our results are made with those of sputtered a‐Si:H films of other workers, glow discharge prepared a‐Si:H, chemically vapor deposited and evaporated a‐Si, and also crystalline silicon. The similarities in the variation of the optical properties of a‐Si:H with increasing hydrogen concentration (or decreasing measurement temperature) to that of crystalline silicon with decreasing measurement temperature lead us to interesting conclusions. Thus, it seems that decreasing disorder (topological or thermal) in a‐Si:H is equivalent to decreasing thermal disorder in c‐Si, at least as far as the disorder‐optical property relationships are concerned

    An exposure-effect approach for evaluating ecosystem-wide risks from human activities

    Get PDF
    Ecosystem-based management (EBM) is promoted as the solution for sustainable use. An ecosystem-wide assessment methodology is therefore required. In this paper, we present an approach to assess the risk to ecosystem components from human activities common to marine and coastal ecosystems. We build on: (i) a linkage framework that describes how human activities can impact the ecosystem through pressures, and (ii) a qualitative expert judgement assessment of impact chains describing the exposure and sensitivity of ecological components to those activities. Using case study examples applied at European regional sea scale, we evaluate the risk of an adverse ecological impact from current human activities to a suite of ecological components and, once impacted, the time required for recovery to pre-impact conditions should those activities subside. Grouping impact chains by sectors, pressure type, or ecological components enabled impact risks and recovery times to be identified, supporting resource managers in their efforts to prioritize threats for management, identify most at-risk components, and generate time frames for ecosystem recovery

    Geographic patterns of genetic variation in a broadly distributed marine vertebrate: new insights into loggerhead turtle stock structure from expanded mitochondrial DNA sequences

    Get PDF
    Previous genetic studies have demonstrated that natal homing shapes the stock structure of marine turtle nesting populations. However, widespread sharing of common haplotypes based on short segments of the mitochondrial control region often limits resolution of the demographic connectivity of populations. Recent studies employing longer control region sequences to resolve haplotype sharing have focused on regional assessments of genetic structure and phylogeography. Here we synthesize available control region sequences for loggerhead turtles from the Mediterranean Sea, Atlantic, and western Indian Ocean basins. These data represent six of the nine globally significant regional management units (RMUs) for the species and include novel sequence data from Brazil, Cape Verde, South Africa and Oman. Genetic tests of differentiation among 42 rookeries represented by short sequences (380 bp haplotypes from 3,486 samples) and 40 rookeries represented by long sequences (~800 bp haplotypes from 3,434 samples) supported the distinction of the six RMUs analyzed as well as recognition of at least 18 demographically independent management units (MUs) with respect to female natal homing. A total of 59 haplotypes were resolved. These haplotypes belonged to two highly divergent global lineages, with haplogroup I represented primarily by CC-A1, CC-A4, and CC-A11 variants and haplogroup II represented by CC-A2 and derived variants. Geographic distribution patterns of haplogroup II haplotypes and the nested position of CC-A11.6 from Oman among the Atlantic haplotypes invoke recent colonization of the Indian Ocean from the Atlantic for both global lineages. The haplotypes we confirmed for western Indian Ocean RMUs allow reinterpretation of previous mixed stock analysis and further suggest that contemporary migratory connectivity between the Indian and Atlantic Oceans occurs on a broader scale than previously hypothesized. This study represents a valuable model for conducting comprehensive international cooperative data management and research in marine ecology

    Intrauterine growth restriction and placental angiogenesis

    Get PDF
    Background: Vascular endothelial growth factor (VEGF), basic-fibroblast growth factor (b-FGF), and endothelial nitric oxide synthase (eNOS) are factors that take part in placental angiogenesis. They are highly expressed during embryonic and fetal development, especially in the first trimester. In this study, we aimed to investigate the role of placental angiogenesis in the development of intrauterine growth restriction (IUGR) by comparing the levels of expression of VEGF-A, b-FGF, and eNOS in normal-term pregnancy and IUGR placentas.Methods: The expression of VEGF-A, b-FGF, and eNOS was studied using the avidin-biotin-peroxidase method in placental tissues diagnosed as normal (n = 55) and IUGR (n = 55). Results were evaluated in a semi-quantitative manner.Results: The expression of all the markers was significantly higher (p < 0.001) in cytotrophoblasts, syncytiotrophoblasts, extravillous trophoblasts, vascular smooth muscle cells, chorionic villous stromal cells, and villous vascular endothelial cells of the IUGR placentas when compared with those collected from normal-term pregnancies.Conclusion: Increased expression of VEGF-A, b-FGF, and eNOS may be the result of inadequate uteroplacental perfusion, supporting the proposal that abnormal angiogenesis plays a role in the pathophysiology of IUGR. © 2010 Barut et al; licensee BioMed Central Ltd
    corecore