303 research outputs found

    Pheochromocytoma in pregnancy: Case report

    Get PDF
    This is a case presentation of a 32 year old woman with pheochromocytoma diagnosed at 27 weeks of gestation, she was managed till term, induced and had assisted vaginal delivery. The pheochromocytoma was surgically re-sected successfully at six weeks postpartum

    Dairy Development Forum—Quo Vadis?

    Get PDF
    Irish Ai

    New Priorities for Agricultural Research in Africa

    Get PDF
    The agricultural economies of Africa have witnessed three major changes during the past 10 to 15 years that justify a reassessment of agricultural research priorities. First, liberalization of macroeconomic and trade policies has increased the relative importance of tradeables in the commodity mix. Second, agricultural input and product markets have expanded, broadening the range of livelihood strategies available to rural households. Finally, broader partnerships for technology development and dissemination are creating new opportunities

    A randomized, open-label, comparative efficacy trial of artemether-lumefantrine suspension versus artemether-lumefantrine tablets for treatment of uncomplicated Plasmodium falciparum malaria in children in western Kenya

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Artemether/lumefantrine (AL) has been adopted as the treatment of choice for uncomplicated malaria in Kenya and other countries in the region. Six-dose artemether/lumefantrine tablets are highly effective and safe for the treatment of infants and children weighing between five and 25 kg with uncomplicated <it>Plasmodium falciparum </it>malaria. However, oral paediatric formulations are urgently needed, as the tablets are difficult to administer to young children, who cannot swallow whole tablets or tolerate the bitter taste of the crushed tablets.</p> <p>Methods</p> <p>A randomized, controlled, open-label trial was conducted comparing day 28 PCR corrected cure-rates in 245 children aged 6–59 months, treated over three days with either six-dose of artemether/lumefantrine tablets (Coartem<sup>®</sup>) or three-dose of artemether/lumefantrine suspension (Co-artesiane<sup>®</sup>) for uncomplicated falciparum malaria in western Kenya. The children were followed-up with clinical, parasitological and haematological evaluations over 28 days.</p> <p>Results</p> <p>Ninety three percent (124/133) and 90% (121/134) children in the AL tablets and AL suspension arms respectively completed followed up. A per protocol analysis revealed a PCR-corrected parasitological cure rate of 96.0% at Day 28 in the AL tablets group and 93.4% in the AL suspension group, p = 0.40. Both drugs effectively cleared gametocytes and were well tolerated, with no difference in the overall incidence of adverse events.</p> <p>Conclusion</p> <p>The once daily three-dose of artemether-lumefantrine suspension (Co-artesiane<sup>®</sup>) was not superior to six-dose artemether-lumefantrine tablets (Coartem<sup>®</sup>) for the treatment of uncomplicated malaria in children below five years of age in western Kenya.</p> <p>Trial registration</p> <p>ClinicalTrials.gov NCT00529867</p

    Implementation of a structured paediatric admission record for district hospitals in Kenya – results of a pilot study

    Get PDF
    BACKGROUND: The structured admission form is an apparently simple measure to improve data quality. Poor motivation, lack of supervision, lack of resources and other factors are conceivably major barriers to their successful use in a Kenyan public hospital setting. Here we have examined the feasibility and acceptability of a structured paediatric admission record (PAR) for district hospitals as a means of improving documentation of illness. METHODS: The PAR was primarily based on symptoms and signs included in the Integrated Management of Childhood Illness (IMCI) diagnostic algorithms. It was introduced with a three-hour training session, repeated subsequently for those absent, aiming for complete coverage of admitting clinical staff. Data from consecutive records before (n = 163) and from a 60% random sample of dates after intervention (n = 705) were then collected to evaluate record quality. The post-intervention period was further divided into four 2-month blocks by open, feedback meetings for hospital staff on the uptake and completeness of the PAR. RESULTS: The frequency of use of the PAR increased from 50% in the first 2 months to 84% in the final 2 months, although there was significant variation in use among clinicians. The quality of documentation also improved considerably over time. For example documentation of skin turgor in cases of diarrhoea improved from 2% pre-intervention to 83% in the final 2 months of observation. Even in the area of preventive care documentation of immunization status improved from 1% of children before intervention to 21% in the final 2 months. CONCLUSION: The PAR was well accepted by most clinicians and greatly improved documentation of features recommended by IMCI for identifying and classifying severity of common diseases. The PAR could provide a useful platform for implementing standard referral care treatment guidelines

    Novel survey method finds dramatic decline of wild cotton-top tamarin population

    Get PDF
    For conservation purposes, accurate methods are required to track cotton-top tamarins in their natural habitat. As existing census methods are not appropriate for surveying these monkeys, a lure-transect method combined with playback vocalization was used here to allow accurate counting of the animals

    Experience and Challenges from Clinical Trials with Malaria Vaccines in Africa.

    Get PDF
    Malaria vaccines are considered amongst the most important modalities for potential elimination of malaria disease and transmission. Research and development in this field has been an area of intense effort by many groups over the last few decades. Despite this, there is currently no licensed malaria vaccine. Researchers, clinical trialists and vaccine developers have been working on many approached to make malaria vaccine available.African research institutions have developed and demonstrated a great capacity to undertake clinical trials in accordance to the International Conference on Harmonization-Good Clinical Practice (ICH-GCP) standards in the last decade; particularly in the field of malaria vaccines and anti-malarial drugs. This capacity is a result of networking among African scientists in collaboration with other partners; this has traversed both clinical trials and malaria control programmes as part of the Global Malaria Action Plan (GMAP). GMAP outlined and support global strategies toward the elimination and eradication of malaria in many areas, translating in reduction in public health burden, especially for African children. In the sub-Saharan region the capacity to undertake more clinical trials remains small in comparison to the actual need.However, sustainability of the already developed capacity is essential and crucial for the evaluation of different interventions and diagnostic tools/strategies for other diseases like TB, HIV, neglected tropical diseases and non-communicable diseases. There is urgent need for innovative mechanisms for the sustainability and expansion of the capacity in clinical trials in sub-Saharan Africa as the catalyst for health improvement and maintained

    Changes in Serological Immunology Measures in UK and Kenyan Adults Post-controlled Human Malaria Infection.

    Get PDF
    Background: The timing of infection is closely determined in controlled human malaria infection (CHMI) studies, and as such they provide a unique opportunity to dissect changes in immunological responses before and after a single infection. The first Kenyan Challenge Study (KCS) (Pan African Clinical Trial Registry: PACTR20121100033272) was performed in 2013 with the aim of establishing the CHMI model in Kenya. This study used aseptic, cryopreserved, attenuated Plasmodium falciparum sporozoites administered by needle and syringe (PfSPZ Challenge) and was the first to evaluate parasite dynamics post-CHMI in individuals with varying degrees of prior exposure to malaria. Methods: We describe detailed serological and functional immunological responses pre- and post-CHMI for participants in the KCS and compare these with those from malaria-naïve UK volunteers who also underwent CHMI (VAC049) (ClinicalTrials.gov NCT01465048) using PfSPZ Challenge. We assessed antibody responses to three key blood-stage merozoite antigens [merozoite surface protein 1 (MSP1), apical membrane protein 1 (AMA1), and reticulocyte-binding protein homolog 5 (RH5)] and functional activity using two candidate measures of anti-merozoite immunity; the growth inhibition activity (GIA) assay and the antibody-dependent respiratory burst activity (ADRB) assay. Results:Clear serological differences were observed pre- and post-CHMI by ELISA between malaria-naïve UK volunteers in VAC049, and Kenyan volunteers who had prior malaria exposure. Antibodies to AMA1 and schizont extract correlated with parasite multiplication rate (PMR) post-CHMI in KCS. Serum from volunteer 110 in KCS, who demonstrated a dramatically reduced PMR in vivo, had no in vitro GIA prior to CHMI but the highest level of ADRB activity. A significant difference in ADRB activity was seen between KCS volunteers with minimal and definite prior exposure to malaria and significant increases were seen in ADRB activity post-CHMI in Kenyan volunteers. Quinine and atovaquone/proguanil, previously assumed to be removed by IgG purification, were identified as likely giving rise to aberrantly high in vitro GIA results. Conclusions: The ADRB activity assay is a promising functional assay that warrants further investigation as a measure of prior exposure to malaria and predictor of control of parasite growth. The CHMI model can be used to evaluate potential measures of naturally-acquired immunity to malaria

    Community screening and treatment of asymptomatic carriers of Plasmodium falciparum with artemether-lumefantrine to reduce malaria disease burden: a modelling and simulation analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Asymptomatic carriers of <it>Plasmodium falciparum </it>serve as a reservoir of parasites for malaria transmission. Identification and treatment of asymptomatic carriers within a region may reduce the parasite reservoir and influence malaria transmission in that area.</p> <p>Methods</p> <p>Using computer simulation, this analysis explored the impact of community screening campaigns (CSC) followed by systematic treatment of <it>P. falciparum </it>asymptomatic carriers (AC) with artemether-lumefantrine (AL) on disease transmission. The model created by Okell <it>et al </it>(originally designed to explore the impact of the introduction of treatment with artemisinin-based combination therapy on malaria endemicity) was modified to represent CSC and treatment of AC with AL, with the addition of malaria vector seasonality. The age grouping, relative distribution of age in a region, and degree of heterogeneity in disease transmission were maintained. The number and frequency of CSC and their relative timing were explored in terms of their effect on malaria incidence. A sensitivity analysis was conducted to determine the factors with the greatest impact on the model predictions.</p> <p>Results</p> <p>The simulation showed that the intervention that had the largest effect was performed in an area with high endemicity (entomological inoculation rate, EIR > 200); however, the rate of infection returned to its normal level in the subsequent year, unless the intervention was repeated. In areas with low disease burden (EIR < 10), the reduction was sustained for over three years after a single intervention. Three CSC scheduled in close succession (monthly intervals) at the start of the dry season had the greatest impact on the success of the intervention.</p> <p>Conclusions</p> <p>Community screening and treatment of asymptomatic carriers with AL may reduce malaria transmission significantly. The initial level of disease intensity has the greatest impact on the potential magnitude and duration of malaria reduction. When combined with other interventions (e.g. long-lasting insecticide-treated nets, rapid diagnostic tests, prompt diagnosis and treatment, and, where appropriate, indoor residual spraying) the effect of this intervention can be sustained for many years, and it could become a tool to accelerate the reduction in transmission intensity to pre-elimination levels. Repeated interventions at least every other year may help to prolong the effect. The use of an effective diagnostic tool and a highly effective ACT, such as AL, is also vital. The modelling supports the evaluation of this approach in a prospective clinical trial to reduce the pool of infective vectors for malaria transmission in an area with marked seasonality.</p
    corecore